Top.Mail.Ru

Scientific and technical journal

«Equipment and technologies for oil and gas complex»

ISSN 1999-6934

On internal energy saving in distillation columns of crude oil primary processing

UDC: 66.061.5
DOI: -

Authors:

ZAKHAROV MIKHAIL K.1,
PLETNEV DENIS B.1

1 MIREA - Russian Technological University, Moscow, Russia

Keywords: internal energy saving, distillation, reflux ratio, crude oil, reflux, primary crude oil processing

Annotation:

The authors of the article consider basic methods of energy saving in energy-intensive processes of chemical and oil refining industries. The reasons for the heat highest consumption when drying wet materials and heat utilization methods limit of the leaving drying agent are explained. All possible energy saving methods which are used for evaporating salt and alkali solutions are listed. Energy saving methods that are applied to distillate binary and multicomponent liquid mixtures are discussed in detail. The energy saving methods in distillation processes based on the reversible distillation theory and on the internal energy saving theory developed by the authors of the article are compared. The higher efficiency of energy saving methods based on the internal energy saving theory in comparison to the reversible distillation is proved. New methods of energy saving are developed based on the internal energy saving theory. It is proved that internal energy saving in distillation columns depends on the reflux ratio in column's rectifying section and on the ratio of the number of theoretical plates in rectifying and stripping sections. The possibility of applying this theory to improve the quality of primary crude oil processing products in complex columns with stripping sections is considered.

Bibliography:

1. Protsessy i apparaty khimicheskoy tekhnologii. Obshchiy kurs: ucheb. v 2 t. / V.G. Aynshteyn, M.K. Zakharov, G.A. Nosov [i dr.]; pod red. V.G. Aynshteyna. – 10-e izd. – SPb.: Lan', 2023. – 1792 s.
2. Benedict M. Multistage separation processes // Chemical Engineering Progress. – 1947. – Vol. 43, No. 2. – P. 41–45.
3. Fonyo Z. Thermodynamic analysis of rectification. Reversible model of rectification // Int. Chemical Engineering. – 1974. – Vol. 14, No. 1. – P. 18–27.
4. Wakabayashi T., Ferrari A., Hasebe S. Design and commercial operation of a discretely heat-integrated distillation column // Chemical Engineering Research and Design. – 2019. – Vol. 147. – P. 214–221. – DOI: 10.1016/j.cherd.2019.04.036
5. Internally heat-integrated distillation columns: A review / M. Naкaiwa, K.J. Huang, A. Endo [et al.] // Chemical Engineering Research and Design. – 2003. – Vol. 81, No. 1. – P. 162–177. – DOI: 10.1205/026387603321158320
6. Halvorsen I.J., Skogestad S. Energy efficient distillation // J. of Natural Gas Science and Engineering. – 2011. – Vol. 3, Issue 4. – P. 571–580. – DOI: 10.1016/j.jngse.2011.06.002
7. Koeijer G.M., Røsjorde A., Kjelstrup S. Distribution oh heat exchange in optimum diabatic distillation columns // Energy. – 2004. – Vol. 29, Issue 12-15. – P. 2425–2440. – DOI: 10.1016/j.energy.2004.03.034
8. Kim Young Han. Design and control of energy-efficient distillation columns // Korean J. of Chemical Engineering. – 2016. – Vol. 33, Issue 9. – P. 2513–2521. – DOI: 10.1007/s11814-016-0124-4
9. Fonyo Z., Mizsey P. Economic applications of heat pumps in integrated distillation systems // Heat Recovery Systems and CHP. – 1994. – Vol. 14, Issue 3. – P. 249–263. – DOI: 10.1016/0890-4332(94)90020-5
10. Zakharov M.K., Egorov A.V., Podmetennyy A.A. O tselesoobraznosti raspredelennogo podvoda teploty v rektifikatsionnykh kolonnakh // Khim. tekhnologiya. – 2022. – T. 23, № 3. – S. 123–130. – DOI: 10.31044/1684-5811-2022-23-3-123-130
11. Zakharov M.K. Protsessy i apparaty khimicheskoy tekhnologii. Teoriya i sposoby energosberezheniya v rektifikatsii: ucheb. posobie dlya vuzov. – SPb.: Lan', 2024. – 228 s.
12. Kanafeeva D.I., Yasashin V.A., Radaev G.V. Analiz putey povysheniya effektivnosti oborudovaniya neftepererabotki // Oborudovanie i tekhnologii dlya neftegazovogo kompleksa. – 2020. – № 3(117). – S. 52–55. – DOI: 10.33285/1999-6934-2020-3(117)-52-55
13. Chernyy Yu.I. Osnovnye pokazateli razvitiya mirovoy neftepererabatyvayushchey promyshlennosti v nachale XXI veka // Tr. RGU nefti i gaza im. I.M. Gubkina. – 2011. – № 4(265). – S. 236–244.
14. Tomina A.P. Analiz usloviy i formirovanie predposylok innovatsionnogo razvitiya predpriyatiy neftyanoy otrasli // Tr. RGU nefti i gaza im. I.M. Gubkina. – 2011. – № 1(262). – S. 136–145.
15. Prokof'eva T.V., Kruglov S.S., Kruglov S.S. Snizhenie energeticheskikh i kapital'nykh zatrat na atmosfernom bloke ustanovki AVT // Tekhnologii nefti i gaza. – 2022. – № 3(140). – S. 3–6. – DOI: 10.32935/1815-2600-2022-140-3-3-6
16. Zakharov M.K., Boichuk A.A. Influence of internal energy saving on selection of optimum scheme of heating for mixture separation in fractionating column // Chemical and Petroleum Engineering. – 2019. – Vol. 54, № 11-12. – P. 901–909. – DOI: 10.1007/s10556-019-00570-4
17. Zakharov M.K., Pletnev D.B. On the necessity of increasing the reflux ratio in complex crude oil separation columns // Sino-Russian symposium on reducing emissions and improving the environmental component of the chemical and petrochemical industry: Collection of works, Moscow, May 27–28, 2024. – Moscow: National University of Oil and Gas "Gubkin University", 2024. – P. 181–183.