Increasing the ammonia unit productivity by the integration of a liquid nitrogen washing unit
UDC: 66.074.5:66.074.3
DOI: -
Authors:
ZHEDYAEVSKY DMITRI N.
1,
ORLOV ARTYOM A.
1
1 National University of Oil and Gas "Gubkin University", Moscow, Russia
Keywords: demand for ammonia, ammonia production, liquid nitrogen washing, limiting factor, productivity increase, syngas compressor, inert impurities, ammonia output volume
Annotation:
In recent years, there has been observed a steady increase of demand for ammonia production, caused by its crucial role in agriculture (fertilizers), industry, and its potential of being used in green energy (as a hydrogen carrier). The main market drivers include growing food demand, the transition to a low-carbon economy, and geopolitical changes of supply chains. The rising market demand for ammonia necessitates the construction of new production facilities and technical upgrade of the existing plants in order to increase output. However, the primary limiting factor of enhancing ammonia unit productivity is the syngas compressor, which represents expensive and complex equipment. The authors of the article present technical solutions for increasing ammonia unit capacity while maintaining the existing syngas compressor. Three process schemes that were compared in terms of productivity increase are presented. Based on the comparison results, the most efficient scheme has been identified.
Bibliography:
1. Sosna M.Kh., Goldobina M.A. Sovremennoe sostoyanie i perspektivy razvitiya proizvodstva ammiaka v Rossii // Neftegazokhimiya. – 2018. – № 4. – S. 17–21. – DOI: 10.24411/2310-8266-2018-10403
2. Spravochnik azotchika. Fiziko-khimicheskie svoystva gazov i zhidkostey. Proizvodstvo tekhnologicheskikh gazov. Ochistka tekhnologicheskikh gazov. Sintez ammiaka. – 2-e izd., pererab. / pod red. E.Ya. Mel'nikova. – M.: Khimiya, 1986. – 512 s.
3. Ramm V.M. Absorbtsiya gazov. – Izd. 2-e, pererab. i dop. – M.: Khimiya, 1976. – 656 s.
4. Ochistka tekhnologicheskikh gazov: ucheb. / T.A. Semenova, I.L. Leytes, Yu.V. Aksel'rod [i dr.]. – Izd. 2-e, pererab. i dop. – M.: Khimiya, 1977. – 488 s.
5. Brodyanskiy V.M., Semenov A.M. Termodinamicheskie osnovy kriogennoy tekhniki. – M.: Energiya, 1980. – 447 s.
6. Opyt razrabotki moduley tsifrovogo dvoynika malotonnazhnogo proizvodstva szhizhennogo prirodnogo gaza v importonezavisimom programmno-vychislitel'nom komplekse "SIMBA" / R.L. Barashkin, D.N. Zhedyaevskiy, P.K. Kalashnikov [i dr.] // Avtomatizatsiya i informatizatsiya TEK. – 2024. – № 2(607). – S. 44–56.
7. Termodinamika i teploperedacha v tekhnologicheskikh protsessakh neftyanoy i gazovoy promyshlennosti: ucheb. / A.F. Kalinin, S.M. Kuptsov, A.S. Lopatin, K.Kh. Shotidi. – M.: RGU nefti i gaza (NIU) im. I.M. Gubkina, 2016. – 264 s.
8. Pat. 2438975 Ros. Federatsiya, MPK C01C 1/04, C01B 3/02, C01B 3/52, B01D 53/14. Sposob polucheniya stekhiometricheskoy azotovodorodnoy smesi, sposob polucheniya ammiaka s ee ispol'zovaniem i ustroystva dlya realizatsii ukazannykh sposobov / I.L. Leytes, A.V. Maykov, Yu.A. Sokolinskiy, T.P. V'yugina; patentoobladatel' OOO "Proektnyy ofis". – № 2010130346/05; zayavl. 21.07.2010; opubl. 10.01.2012, Byul. № 1.
9. Pat. 2561970 Ros. Federatsiya, MPK C01C 1/04. Sposob modernizatsii ustanovki dlya proizvodstva ammiaka s promyvkoy produvochnogo potoka na osnove azota / S. Pantsa, P. Moreo, E. Strepparola; patentoobladatel' KASALE SA (CH). – № 2012109110/05; zayavl. 03.08.2010; opubl. 10.09.2015, Byul. № 25.