Scientific and technical journal

«Automation and Informatization of the fuel and energy complex»

ISSN 0132-2222

DEVELOPMENT OF AN EDUCATIONAL SOFTWARE AND HARDWARE COMPLEX FOR RESEARCHING ALGORITHMS FOR AUTOMATIC TUNING OF CONTROLLERS

UDC: 681.518.3
DOI: 10.33285/0132-2222-2021-8(577)-63-68

Authors:

POPADKO VLADIMIR EFIMOVICH 1,
BARASHKIN ROMAN LEONARDOVICH 1,
KALASHNIKOV PAVEL KIRILLOVICH 1,
DANILOV DMITRY KONSTANTINOVICH

Keywords: closed feedback, automatic tuning, control of continuous technological processes, Ziegler - Nichols method, PID-controller, hydraulic bench, CoDeSys, labView, Arduino IDE

Annotation:

Successful introduction of advanced process controls systems at oil and gas enterprises is a high level of tuning of the basic management system. One of the primary ways to improve the quality of tuning the controllers of the basic control system can be the widespread use of algorithms for automatic tuning of controller parameters. The paper proposes a software and hardware complex designed to study the algorithms for autotuning PID-controllers based on the object model. The complex includes a hydraulic stand with sensors and actuators, a supervisory control and data acquisition, a human-machine interface, software implementation of autotuning algorithms. In the hydraulic bench, the level of the interface in the tank is used as a controlled variable. Degree of control valves opening or pump power is manipulated variables. The bench will allow studying the methods of tuning the regulator with open and closed feedback. The classic open-loop Ziegler - Nichols method is considered as an example for a regulator tuning. The software and hardware complex was developed taking into account modern requirements for the possibility of organizing remote access to the bench control system and placing the source materials in the public domain. The developed complex is proposed to be used in training centers of enterprises and in the educational process of higher educational institutions for the preparation of bachelors in the direction of "Control Systems Engineering".

Bibliography:

1. Bennett S. A Brief History of Automatic Control // IEEE Control Systems. - 1996. - Vol. 16, Issue 3. - P. 17-25. - DOI: 10.1109/37.506394
2. Bauer M., Craig I. Economic assessment of advanced process control - a survey and framework // J. of Process Control. - 2008. - Vol. 18, Issue 1. - P. 2-18. - DOI: 10.1016/j.jprocont.2007.05.007
3. Desborough L., Miller R. Increasing customer value of industrial control performance monitoring: Honeywell's experience // Proc. AIChE Symp. - 2002. - Ser. 98. - P. 153-186.
4. Åström K.J., Hägglund T. The future of PID control // Control Engineering Practice. - 2001. - Vol. 9, Issue 11. - P. 1163-1175. - DOI: 10.1016/S0967-0661(01)00062-4
5. Garg A., Mhaskar P. Subspace identification based modeling and control of batch particulate processes // Industrial & Engineering Chemistry Research. - 2017. - Vol. 56, Issue 26. - P. 7491-7502. - DOI: 10.1021/acs.iecr.7b00682
6. Vilanova R., Visioli A. PID Control in the Third Millennium: Lessons Learned and New Approaches. - London: Springer, 2012. - 600 p. - DOI: 10.1007/978-1-4471-2425-2
7. Rojas J.D., Arrieta O., Vilanova R. Industrial PID Controller Tuning: With a Multiobjective Framework Using MATLAB. - Springer Int. Publishing, 2021. - 158 p.
8. An experimental comparison of PID autotuners / J. Berner, K. Soltesz, T. Hägglund, K.J. Åström // Control Engineering Practice. - 2018. - Vol. 73. - P. 124-133. - DOI: 10.1016/j.conengprac.2018.01.006
9. O'Dwyer A. Handbook of PI and PID Controller Tuning Rules. - 3rd Edition. - London: Imperial College Press, 2009. - 624 p. - DOI: 10.1142/P575
10. Hägglund T. The one-third rule for PI controller tuning // Computers and Chemical Engineering. - 2019. - Vol. 127. - P. 25-30. - DOI: 10.1016/j.compchemeng.2019.03.027
11. Bequette B.W. Process control practice and education: Past, present and future // Computers and Chemical Engineering. - 2019. - Vol. 128. - P. 538-556. - DOI: 10.1016/j.compchemeng.2019.06.011
12. Cohen G.H., Coon G.A. Theoretical consideration of retarded control // Transactions of the ASME. - 1953. - Vol. 75. - P. 827-834.
13. Yuwana M., Seborg D.E. A new method for on-line controller tuning // AIChE J. - 1982. - Vol. 28, Issue 3. - P. 434-440.
14. Astrom K., Hagglund T. Automatic Tuning of PID Controllers. - Instrument Society of America, 1988.
15. Luyben W. Getting more information from relay feedback tests // Industrial & Engineering Chemistry Research. - 2001. - Vol. 40, Issue 20. - P. 4391-4402. - DOI: 10.1021/ie010142h
16. Leva A. Comparative study of model-based PI(D) autotuning methods // American Control Conf., New York, 9-13 July. - IEEE, 2007. - DOI: 10.1109/ACC.2007.4282602
17. Ziegler J., Nichols N. Optimum settings for automatic controllers // Transactions of the A.S.M.E. - 1942. - Vol. 64. - P. 759-768.
18. Åström K.J., Hägglund T. Automatic tuning of simple regulators with specifications on phase and amplitude margins // Automatica. - 1984. - Vol. 20, Issue 5. - P. 645-651. - DOI: 10.1016/0005-1098(84)90014-1
19. Isermann R. Digital Control Systems. Vol. 2: Stochastic Control, Multivariable Control, Adaptive Control, Applications. - New York: Springer-Verlag, 1991. - XXI, 325 p.