Scientific and technical journal

«Automation and Informatization of the fuel and energy complex»

ISSN 0132-2222

Automation and Informatization of the fuel and energy complex
Objects of comparison for information-measuring system of nano-objects detection and identification in chemical synthesis products

UDC: 681.5
DOI: 10.33285/2782-604X-2022-10(591)-26-36

Authors:

AL-KHAIALI ALI RASIM IBRAGIM1,
SHELOKHVOSTOV VIKTOR P.1,
MAKARCHUK MAXIM V.1,
CHERNYSHOV VLADIMIR N.1

1 Tambov State Technical University, Tambov, Russia

Keywords: nano-materials, cellulose, information system, measurement, identification

Annotation:

The properties of suspensions with nano-sized objects of various concentrations were studied. A technique has been developed for creating comparison objects for an information-measuring system based on a medium with a low concentration of nano-components. The possibility of using the developed system for the detection and identification of nano-cellulose in technological media using reference samples is shown.

Bibliography:

1. Henriksson M., Berglund L.A. Structure and properties of cellulose nanocomposite films containing melamine formaldehyde // J. Applied Polymer Science. – 2007. – Vol. 106, Issue 4. – P. 2817–2824. – DOI: 10.1002/APP.26946
2. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers / M. Henriksson, G. Henriksson, L.A. Berglund, T. Lindström // European Polymer J. – 2007. – Vol. 43, Issue 8. – P. 3434–3441. – DOI: 10.1016/J.EURPOLYMJ.2007.05.038
3. Isogai A., Saito T., Fukuzumi H. TEMPO-oxidized cellulose nanofibers // Nanoscale. – 2011. – Vol. 3, Issue 1. – P. 71–85. – DOI: 10.1039/c0nr00583e
4. Janardhnan S., Sain M.M. Isolation of cellulose microfibrils – an enzymatic approach // BioResources. – 2006. – Vol. 1, Issue 2. – P. 176–188. – DOI: 10.15376/biores.1.2.176-188
5. Ning Lin, Dufresne A. Nanocellulose in biomedicine: current status and future prospect // European Polymer J. – 2014. – Vol. 59. – P. 302–325. – DOI: 10.1016/j.eurpolymj.2014.07.025
6. Biosynthesis, production and application of bacterial cellulose / Shin-Ping Lin, I.L. Calvar, J.M. Catchmark [et al.] // Cellulose. – 2013. – Vol. 20, Issue 5. – P. 2191–2219. – DOI: 10.1007/s10570-013-9994-3
7. Laccase, an Emerging Tool to Fabricate Green Composites: A Review / M. Nasir, R. Hashim, O. Sulaiman [et al.] // BioResources. – 2015. – Vol. 10, Issue 3. – P. 6262–6284. – DOI: 10.15376/biores.10.3.nasir
8. Laccase application in medium density fibreboard to prepare a bio-composite / M. Nasir, A. Gupta, M.D.H. Beg [et al.] // RSC Advanced. – 2014. – Vol. 4, Issue 22. – P. 11520–11527. – DOI: 10.1039/C3RA40593A
9. Nechyporchuk O., Belgacem M.N., Bras J. Production of cellulose nanofibrils: a review of recent advances // Industrial Crops and Products. – 2016. – Vol. 93. – P. 2–25. – DOI: 10.1016/J.INDCROP.2016.02.016
10. Enzymatic hydrolysis combined with mechanical shear and high-pressure homogenization to produce nanoscale cellulose fibrils and durable gels / M. Pääkkö, M. Ankerfors, H. Kosonen [et al.] // Biomacromolecules. – 2007. – Vol. 8, Issue 6. – P. 1934–1941. – DOI: 10.1021/BM061215P
11. Homogeneous suspensions of individualized microfibrils as a result of the TEMPO-catalyzed oxidation of native cellulose / T. Saito, Y. Nishiyama, J.-L. Putaux [et al.] // Biomacromolecules. – 2006. – Vol. 7, Issue 6. – P. 1687–1691. – DOI: 10.1021/BM060154S
12. Al'-Khaiali A.R.I., Zubov D.V. Opredelenie aktivnosti fermentov i antibiotikov s pomoshch'yu tsifrovoy fotografii // Ekologicheskie sistemy i pribory. – 2019. – № 1. – S. 3–7.
13. Astaf'eva N.M. Veyvlet-analiz: osnovy teorii i nekotorye prilozheniya // Uspekhi fizicheskikh nauk. – 1996. – T. 166, № 11. – S. 1145–1170.
14. Burlakova E.B. Osobennosti deystviya sverkhmalykh doz biologicheski aktivnykh veshchestv i fizicheskikh faktorov nizkoy intensivnosti // Rossiyskiy khimicheskiy zhurn. – 1999. – № 5. – S. 3–11.
15. Zubareva G.M., Kargapolov A.V. Vliyanie sverkhmalykh kolichestv nekotorykh kationov na energoinformatsionnye svoystva vody // MIS-RT. – 2004. – Sb. 32. – URL: https://www.ikar.udm.ru/sb/sb32-1-1.htm
16. Vorob'ev V.I., Gribunin V.G. Teoriya i praktika veyvlet-preobrazovaniya. – SPb.: Voennyy in-t svyazi, 1999. – 204 s.
17. Gotovskiy Yu.V., Perov Yu.F. Osobennosti biologicheskogo deystviya fizicheskikh faktorov malykh i sverkhmalykh intensivnostey i doz. – M.: Imedis, 2000. – 192 s.
18. Zakurko A.V. Razrabotka metoda obnaruzheniya i identifikatsii sinteziruemykh nanoob"ektov po ikh energeticheskim kharakteristikam: avtoref. dis. … kand. tekhn. nauk: 05.11.13. – Tambov, 2007. – 19 s.
19. Isakov A.V. Laboratornoe delo // Meditsina. – 1980. – № 5. – S. 290–293.
20. Karpov V.G., Subashiev A.V. Chto takoe fraktaly? – L.: LPI, 1989.
21. Keyts M. Tekhnika lipidologii. – M.: Mir, 1975. – S. 107–112.
22. Chernikov F.R., Yamskov I.A. Lazernoe svetorasseyanie pri issledovanii rastvorov endogennykh soedineniy v sverkhmalykh kontsentratsiyakh // Ontogenez. – 2000. – T. 31, № 4. – S. 272.
23. Primenenie veyvlet-preobrazovaniy dlya obrabotki eksperimental'nykh dannykh, poluchennykh metodom elektronno-opticheskogo muara / M.V. Makarchuk, A.V. Ermakov, A.V. Zakurko, V.P. Shelokhvostov // Tr. Tamb. gos. tekhn. un-ta: sb. nauch. st. molodykh uchenykh i studentov. – Tambov, 2003. – Vyp. 13. – S. 252–255.
24. Mandel'brot B. Fraktal'naya geometriya prirody. – M.: In-t komp'yuter. issled., 2002. – 656 s.
25. Morozov A.A. Tekhnologiya gomeopaticheskogo potentsirovaniya i problema biologicheskikh effektov malykh doz khimicheskikh veshchestv // Khimicheskaya tekhnologiya. – 2001. – № 2. – S. 45–47.
26. Zubareva G.M., Kargapolov A.V., Yaguzhinskiy L.S. Nekotorye mekhanizmy deystviya askorbinovoy kisloty na protsessy transformatsii struktur vody // Dokl. Akademii nauk. – 2003. – T. 388, № 4. – S. 549–551.
27. Polygalina G.V., Cherednichenko V.S., Rimareva L.V. Opredelenie aktivnosti fermentov. – M.: DeLi print, 2003. – 375 s.
28. Fraktaly v fizike: tr. VI Mezhdunar. simpoziuma po fraktalam v fizike / pod red. L. P'etronero, E. Tozatti; per. s angl. pod red. Ya.G. Sinaya, I.M. Khalatnikova. – M.: Mir, 1988. – 670 s.
29. Rakov E.G. Nanotrubki i fullereny: ucheb. posobie. – M.: Universitetskaya kn., 2006. – 376 s.
30. Stolnits E., DeRouz T., Salezin D. Veyvlety v komp'yuternoy grafike: teoriya i prilozheniya: per. s angl. – M.; Izhevsk: NITs "Regulyarnaya i khaoticheskaya dinamika", 2002. – 272 s.
31. Shelokhvostov V.P., Chernyshov V.N. Metody i sistemy diagnostiki nanomodifitsirovannykh kondensirovannykh sred. – M.: Spektr, 2013. – 144 s.
32. Shelokhvostov V.P., Chernyshov V.N. Metody i sistemy diagnostiki nanostrukturirovannykh sred i materialov. – SPb.: Ekspertnye resheniya, 2017. – 223 s.