Scientific and technical journal

«Automation and Informatization of the fuel and energy complex»

ISSN 0132-2222

Automation and Informatization of the fuel and energy complex
Features of transformer digital protection of oil and gas industry facilities

UDC: 621.316.1
DOI: 10.33285/2782-604X-2022-12(593)-27-35

Authors:

VLASOVA EKATERINA P.1,
KUZYAKOV OLEG N.1,
AKHMETVALEEV DANIIL M.1

1 Tyumen Industrial University, Tyumen, Russia

Keywords: differential protection, transformer, model, harmonic composition, set-point

Annotation:

The observed trend of introducing digital technologies into the structure of the fuel and energy complex is accompanied by a transition from full-scale testing methods to test methods on the stands of mathematical and semi-natural modeling. Carrying out traditional test methods is impractical for oil and gas industry facilities, since it does not take into account all the characteristic modes of operation of the facilities, therefore, consideration of the features of digital differential protection of the transformer is carried out on the basis of a simulation model in the Simulink graphical environment based on Matlab, which provides reproduction of physical objects in the form of mathematical models. The purpose of the study of the proposed model was to determine techniques that can improve the accuracy of the differential protection settings and ensure the sensitivity of the protection under different operating modes of the transformer. During the study of the model, the features of modeling the protection operation were taken into consideration with account for the nature of changes in the instantaneous differential current in emergency modes, in over-excitation and surge modes of the magnetizing current of the transformer. The results of the research allowed selecting the optimal parameters to prevent excessive triggering of the differential protection of the transformer based on the analysis of the harmonic composition of the current in case of damage.

Bibliography:

1. Pravila ustroystva elektroustanovok. – 7-e i 6-e izd. – SPb.: DEAN, 2014. – 1168 s.
2. Model' tsifrovoy zashchity transformatora PS 110/10 kV nefteperekachivayushchey stantsii / E.P. Vlasova, O.N. Kuzyakov, M.S. Mikheyko, A.A. Shelyakin // Avtomatizatsiya i informatizatsiya TEK. – 2022. – № 7(588). – S. 15–20. – DOI: 10.33285/2782-604X-2022-7(588)-15-20
3. Jafari R., Naderi M.S., Gharehpetain G.B. An Adaptive Protection Scheme based on Fault Location for Smart Micro-Grids // Renewable Energies and Power Quality J. – 2014. – Vol. 1, No. 12. – P. 449–453. – (Int. Conf. on Renewable Energies and Power Quality (ICREPQ'14), Cordoba, Spain, April 8–10, 2014). – DOI: 10.24084/REPQJ12.366
4. Apostolopoulos C.A., Korres G.N. Real-time implementation of digital relay models using MATLAB/SIMULINK and RTDS // Electrical Energy Systems. – 2010. – Vol. 20, Issue 3. – P. 290–305. – DOI: 10.1002/etep.311
5. Chernykh I.V. Modelirovanie elektrotekhnicheskikh ustroystv v Matlab, SimPowerSystems i Simulink. – M.: DKM Press; SPb.: Piter, 2008. – 288 s.
6. STO DIVG-055-2013. Transformatory i avtotransformatory 35 – 220 kV. Differentsial'naya tokovaya zashchita. Raschet ustavok. Metodicheskie ukazaniya: standart organizatsii OOO "NTTs "Mekhanotronika". – Vved. 2013–11–29 prikazom General'nogo direktora № 306-UK. – SPb.: Mekhanotronika, 2013. – 54 s.
7. Differential protection for power transformers with non-standard phase shifts / L. Sevov, Zhiying Zhang, I. Voloh, J. Cardenas // 64th Annual Conference for Protective Relay Engineers, College Station, TX, USA, April 11–14. – 2011. – P. 301–309. – DOI: 10.1109/CPRE.2011.6035631
8. Rumyantsev Yu.V. Kompleksnaya model' dlya issledovaniya funktsionirovaniya tsifrovoy differentsial'noy zashchity silovogo transformatora // Energetika. Izv. vysshikh ucheb. zavedeniy i energet. ob"edineniy SNG. – 2016. – T. 59, № 3. – S. 203–224.
9. Dakhlan D.F. Modeling of internal faults in three-phase three-winding transformers for differential protection studies: MSc Graduation Thesis. – Delft University of Technology, 2009. – 80 p.
10. Novash I.V., Rumyantsev Yu.V. Raschet parametrov modeli trekhfaznogo transformatora iz biblioteki Matlab-Simulink s uchetom nasyshcheniya magnitoprovoda // Energetika. Izv. vysshikh ucheb. zavedeniy i energet. ob"edineniy SNG. – 2015. – № 1. – S. 12–24.
11. An Equivalent Instantaneous Inductance-Based Technique for Discrimination Between Inrush Current and Internal Faults in Power Transformers / Ge Baoming, A.T. de Almeida, Zheng Qionglin, Wang Xiangheng // IEEE Transaction on Power Delivery. – 2005. – Vol. 20, Issue 4. – P. 2473–2482. – DOI: 10.1109/TPWRD.2005.855443
12. Glazyrin V.E., Litvinov I.I. Priznaki avariynykh rezhimov v tsepyakh differentsial'nykh zashchit silovykh transformatorov // Problemy regional'noy energetiki. – 2017. – № 1(33). – S. 24–31.
13. A novel intelligent protection system for power transformers considering possible electrical faults, inrush current, CT saturation and over-excitation / M. Yazdani-Asrami, M. Taghipour-Gorjikolaie, S. Razavi, S.A. Gholamian // Int. J. of Electrical Power & Energy Systems. – 2015. – Vol. 64. – P. 1129–1140. – DOI: 10.1016/J.IJEPES.2014.08.008
14. Rudež U., Mihalic R. Sympathetic Inrush Current Phenomenon with Loaded Transformers // Electric Power Systems Research. – 2016. – Vol. 138. – P. 3–10. – DOI: 10.1016/J.EPSR.2015.12.011