Scientific and technical journal

«Automation and Informatization of the fuel and energy complex»

ISSN 0132-2222

Automation and Informatization of the fuel and energy complex
Synthesis of the instrumental environment algorithms for solving optimization problems with epistemic uncertainty of parameters. Part 1. Synthesis methodology

UDC: 004.421+004.4'2
DOI: 10.33285/2782-604X-2022-5(586)-18-25

Authors:

OGORODNIKOV OLEG V.1

1 V.A. Trapeznikov Institute of Control Sciences RAS, Moscow, Russian Federation

Keywords: optimization problem, optimization model, uncertain programming, synthesis of algorithms, uncertainty theory, uncertain variable, epistemic uncertainty, multi-criteria optimization

Annotation:

The article considers an approach to the synthesis of algorithms for solving optimization problems with epistemic uncertainty of parameters. Such tasks can arise in various fields of science and technology of oil and gas complex when creating complex technical objects, when there is not enough data to accept statistical hypotheses about uncertain parameters and it is necessary to resort to expert evaluation. In this regard, there is an urgent need for a method of algorithms automated synthesis for solving such problems, because when changing the values of uncertain parameters or when changing the classification of parameters to uncertain and deterministic, a complete restructuring of the solution algorithm is often necessary. The author of the article proposes a method of synthesizing algorithms for solving optimization problems with epistemic uncertainty of parameters. The requirements to the algorithms used for preparing expert data, for solving the optimization problem and choosing a design solution on a Pareto set are determined, their modular structure and synthesis procedures are determined. A general scheme for solving an optimization problem under uncertainty using the described algorithms is presented.

Bibliography:

1. Sayt DATADVANCE. – URL: https://www.datadvance.net
2. Ansys optiSLang. Process Integration & Design Optimization. – URL: https://www.ansys.com/products/platform/ansys-optislang
3. Dobronets B.S. Interval'naya matematika: ucheb. posobie. – Krasnoyarsk: Krasnoyarskiy gos. un-t, 2004. – 218 s.
4. Zadeh L.A. Fuzzy Sets // Information and Control. – 1965. – Vol. 8. – P. 338–353.
5. Zadeh L.A. Fuzzy Sets as the Basis for a Theory of Possibility // Fuzzy Sets and Systems. – 1978. – Vol. 8, Issue 1. – P. 3–28. – DOI: 10.1016/0165-0114(78)90029-5
6. Alcala-Fdez J., Alonso J.M. A Survey of Fuzzy Systems Software: Taxonomy, Current Research Trends, and Prospects // IEEE Transactions on Fuzzy Systems. – 2016. – Vol. 24, Issue 1. – P. 40–56. – DOI: 10.1109/TFUZZ.2015.2426212
7. A fuzzy linear programming based approach for tactical supply chain planning in an uncertainty environment / D. Peidro, J. Mula, M. Jiménez, M. del Mar Botella // European J. of Operational Research. – 2010. – Vol. 205, Issue 1. – P. 65–80. – DOI: 10.1016/j.ejor.2009.11.031
8. Fuzzy optimization for supply chain planning under supply, demand and process uncertainties / D. Peidro, J. Mula, R. Poler, J.-L. Verdegay // Fuzzy Sets and Systems. – 2009. – Vol. 160, Issue 18. – P. 2640–2657. – DOI: 10.1016/j.fss.2009.02.021
9. Mula J., Peidro D., Poler R. The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand // Int. J. of Production Economics. – 2010. – Vol. 128, Issue 1. – P. 136–143. – DOI: 10.1016/j.ijpe.2010.06.007
10. Pathak S., Sarkar (Mondal) S. A fuzzy optimization model to the aggregate production/distribution planning decision in a multi-item supply chain network // Int. J. of Management Science and Engineering Management. – 2012. – Vol. 7, Issue 3. – P. 163–173. – DOI: 10.1080/17509653.2012.10671220
11. Rommelfanger H. Fuzzy linear programming and applications // European J. of Operational Research. – 1996. – Vol. 92, Issue 3. – P. 512–527. – DOI: 10.1016/0377-2217(95)00008-9
12. Liu Baoding. Uncertainty Theory. – 2nd ed. – Berlin: Springer Verlag, 2007. – XVII, 487 p. – DOI: 10.1007/978-3-662-44354-5
13. Determining maneuverable aircraft parameters in preliminary design under conditions of uncertainty / G.S. Veresnikov, L.A. Pankova, V.A. Pronina [et al.] // Procedia Computer Science. – 2017. – Vol. 112. – P. 1123–1130. – DOI: 10.1016/j.procs.2017.08.143
14. Reshenie zadach predvaritel'nogo proektirovaniya v usloviyakh parametricheskoy neopredelennosti / G.S. Veresnikov, O.V. Ogorodnikov, L.A. Pankova, V.A. Pronina // Problemy upravleniya. – 2017. – № 4. – S. 65–73.
15. Optimal design of technical objects under mixed parametric uncertainty / G.S. Veresnikov, L.A. Pankova, V.A. Pronina [et al.] // Management of Large-Scale System Development (MLSD): Proc. of the 12th Int. Conf., Moscow, Oct. 1–3. – IEEE, 2019. – DOI: 10.1109/MLSD.2019.8911060
16. Predvaritel'noe proektirovanie letatel'nykh apparatov v usloviyakh smeshannoy neopredelennosti / G.S. Veresnikov, L.A. Pankova, V.A. Pronina [i dr.] // Tr. XIII Vseros. soveshch. po problemam upravleniya (VSPU-2019), Moskva, 17–20 iyunya. – M.: IPU RAN, 2019. – S. 3155–3160.
17. Yuanguo Zhu. Functions of Uncertain Variables and Uncertain Programming // J. of Uncertain Systems. – 2012. – Vol. 6, No. 4. – P. 278–288.
18. Perova V.I., Sabaeva T.A., Chekmarev D.T. Razrabotka algoritmov dlya resheniya zadach na EVM: ucheb. posobie. – N. Novgorod: Nizhegorodskiy gos. un-t, 2015. – 136 s.
19. Gudman S., Khidetniemi S. Vvedenie v razrabotku i analiz algoritmov. – M.: Mir, 1981. – 368 s.