Top.Mail.Ru

Scientific and technical journal

«Automation and Informatization of the fuel and energy complex»

ISSN 0132-2222

The use of interval methods for data analysis

UDC: 519:004
DOI: -

Authors:

FROLOV ALEXANDER V.1

1 Maritime State University named after admiral G.I. Nevelsky, Vladivostok, Russia

Keywords: cluster structure, interval analysis, binary feature, regularity, scaling, taxonomy

Annotation:

The necessity of identifying and analyzing information and logical connections and patterns, in particular, Data Mining and non-traditional, flexible approaches, determines the relevance of the study. Using the methods of system analysis, scaling, taxonomy and interval analysis, the author of the article studies the problems of comparing objects by key features. The key approach here is to find a measure of compactness and analyze the connectivity of objects using interval methods in the features space. The feature values division into intervals on the sample objects is shown, then, by using the merging method into zones, the classification of the sampling objects is implemented. The conducted analysis resulted in significant patterns identification that allows improving the decision-making process in various areas. The article can be useful for specialists in the field of data analysis and development of intelligent systems as well as for further research in this area.

Bibliography:

1. Data Mining: sut' intellektual'nogo analiza i primenenie. – URL: https://www.decosystems.ru/data-mining-eto/ (data obrashcheniya 20.03.2024).
2. Berestneva O.G., Muratova E.A., Yankovskaya A.E. Analiz struktury mnogomernykh dannykh metodom lokal'noy geometrii // Izvestiya Tomskogo politekhnicheskogo universiteta. – 2003. – T. 306, № 3. – S. 19–23.
3. Ignatyev N.A. Structure Choice for Relations between Objects in Metric Classification Algorithms // Pattern Recognition and Image Analysis. – 2018. – Vol. 28, No. 4. – P. 695–702. – DOI: 10.1134/S1054661818040132
4. Sadykova A.K., Leonov D.G. Kontseptsiya soglasovaniya dannykh v tekhnologicheskom protsesse // Avtomatizatsiya i informatizatsiya TEK. – 2025. – № 2(619). – S. 20–24.
5. Bazueva E.V., Butorina O.V., Stepanenko V.A. Chelovecheskiy kapital i neravenstvo: novye upravlencheskie vyzovy dlya ekonomiki regionov Rossii // Problemy razvitiya territorii. – 2023. – T. 27, № 4. – S. 32–51. – DOI: 10.15838/ptd.2023.4.126.3
6. Glezman L.V. Prioritety prostranstvenno-otraslevogo razvitiya regionov v usloviyakh tsifrovizatsii ekonomiki // Voprosy innovatsionnoy ekonomiki. – 2021. – T. 11, № 2. – S. 581–596. – DOI: 10.18334/vinec.11.2.111961
7. Sharyy S.P. Konechnomernyy interval'nyy analiz. – Novosibirsk: XYZ, 2016. – 606 s.
8. Frolov A.V., Dymchenko Yu.V. Korporativnaya bezopasnost' i obespechenie zashchity dannykh ot utechki v usloviyakh udalennoy raboty // Promyshlennye ASU i kontrollery. – 2023. – № 9. – S. 47–49. – DOI: 10.25791/asu.9.2023.1461
9. Frolov A.V., Dymchenko Yu.V., Vereshchagina E.A. Zashchita oblachnykh korporativnykh dannykh // Promyshlennye ASU i kontrollery. – 2023. – № 3. – S. 37–40. – DOI: 10.25791/asu.3.2023.1425