Top.Mail.Ru

Scientific and technical journal

«Automation and Informatization of the fuel and energy complex»

ISSN 0132-2222

Methodology for calculating the relative extended uncertainty for ultrasonic transit time gas flowmeters

UDC: 681.121.89.082.4
DOI: -

Authors:

BOLSHAKOV NIKITA V.1,
KHRABROV IGOR YU.1

1 National University of Oil and Gas "Gubkin University", Moscow, Russia

Keywords: gas flow measurement, ultrasonic flow meter, measurements uncertainty, accuracy assessment, calculation method, decomposition method, metrologically significant values, correlation of factors

Annotation:

Ultrasonic gas flow meters are currently widely used in the gas industry. One of the key advantages of ultrasonic flow meters (UFM) is high measurement accuracy, characterized in terms of measurement error or uncertainty. Measurement uncertainty in industry is determined according to the methodology specified in GOST 8.611-2024, but it has a number of significant drawbacks that make it impossible to assess the impact of various factors on volumetric flow readings under operating conditions. For this purpose, a detailed methodology has been developed for calculating the relative extended uncertainty of volumetric flow measurements under standard conditions of an UFM, which allows comprehensively evaluating the accuracy characteristics of an UFM. In order to simplify the general methodology for calculating uncertainty, the decomposition method was used to calculate mutually correlating estimates of metrologically significant quantities. The proof of the validity and limitations of the decomposition method for estimating the uncertainty of measuring gas flow is presented. Calculation equations are given for: volume flow under standard conditions; volume flow under operating conditions; correction of geometric parameters. The mutually correlating factors are indicated, the covariance among which should be taken into account in the calculation method. Some comments are given on the components of the relative extended uncertainty of measuring gas flow.

Bibliography:

1. GOST 8.611-2024. Raskhod i ob"em gaza. Metodika (metod) izmereniy s primeneniem ul'trazvukovykh preobrazovateley raskhoda. – Vved. 2025–07–01. – M.: Rossiyskiy institut standartizatsii, 2025. – IV, 58 s.
2. ISO 17089-1:2019. Izmerenie raskhoda tekuchikh sred v zakrytykh kanalakh. Ul'trazvukovye schetchiki gaza. Chast' 1. Schetchiki dlya kommercheskogo ucheta i lokal'nykh izmereniy. – Vved. 2019–08–23. – M.: Standartinform, 2019. – 124 s.
3. Kremlevskiy P.P. Raskhodomery i schetchiki kolichestva veshchestv: spravochnik: v 2 kn. Kn. 2 / pod obshch. red. E.A. Shornikova. – 5-e izd., pererab. i dop. – SPb.: Politekhnika, 2004. – 412 s.
4. Baker R.C. Flow Measurement Handbook: Industrial Designs, Operating Principles, Performance, and Applications. – 2nd edition. – Cambridge: Cambridge University Press, 2016. – XLVI, 745 p. – DOI: 10.1017/CBO9781107054141
5. GOST 34100.3-2017. Neopredelennost' izmereniy. Chast' 3. Rukovodstvo po vyrazheniyu neopredelennosti izmereniya. – Vved. 2018–09–01. – M.: Standartinform, 2018. – VII, 105 s.
6. Lunde P., Frøysa K.-E. Handbook of Uncertainty Calculations. Ultrasonic Fiscal Gas Metering Stations. – Bergen: CMR, 2001. – 273 p. – DOI: 10.13140/RG.2.2.14218.82884
7. Lunde P., Frøysa K.-E., Vestrheim M. GARUSO-1.0. Uncertainty model for multipath ultrasonic transit time gas flow meters. – Bergen: CMR, 1997. – 243 s.
8. Metod i tekhnika nepreryvnogo opredeleniya koeffitsienta szhimaemosti gazov / D.V. Grishin, G.S. Golod, I.N. Moskalev [i dr.] // Avtomatizatsiya, telemekhanizatsiya i svyaz' v neftyanoy promyshlennosti. – 2016. – № 1. – S. 11–20.