Scientific and technical journal

«Geology, geophysics and development of oil and gas fields»

ISSN 2413-5011

TECHNOLOGICAL POSSIBILITIES AND RESULTS OF OPERATION OF HIGH FLOW-RATE OFFSHORE GAS WELLS IN RUSSIA AND ABROAD

UDC: 622.279.04
DOI: 10.33285/2413-5011-2021-9(357)-55-64

Authors:

DZYUBLO ALEXANDER DMITRIEVICH1,
STOROZHEVA ANNA EVGENIEVNA1

1 National University of Oil and Gas "Gubkin University", Moscow, Russian Federation

Keywords: natural gas, shelf, offshore field, gas production, high-rate well, gas recovery rate, field's operation, well design

Annotation:

The relevance of the research is caused by the peculiarity of the development of an offshore oil and gas field, namely, the limited period of its operation (25...30 years). The offshore field development system should ensure a high rate of reserves recovery from the subsoil with a relatively small number of production wells in a short period of time, thereby increasing the economic efficiency of field development. The aim of the research is to substantiate the technical feasibility of operating an offshore gas condensate field with high production wells, taking into account geological conditions and the quality of reservoir rocks. The technologies, calculations of the authors and the experience of operating high-rate offshore gas wells in the Russian Federation and foreign countries are considered. Information is provided on the shelf fields where gas is produced by highly productive wells. The well designs of the studied fields are considered. The application of the technologies for achieving high flow rates in offshore fields was analyzed, making it possible to assess the conditions for gas production feasibility. The technical-technological and mining-geological conditions for achieving high gas flow rates during the operation of offshore gas condensate fields are shown. Recommendations are given to improve the efficiency of the Kirinskoye field development on the Sakhalin shelf.

Bibliography:

1. Norwegian Petroleum Directorate. - URL: http://www.npd.no (дата обращения 01.03.2021).
2. Åsgard North Sea Northern, Statoil oilfield project. - URL: https://www.offshore-technology.com/projects/asgard/(дата обращения 01.03.2021).
3. Hartmann R.A., Vikeså G.O., Kjærnes P.А. Big Bore, high flowrate, deep water gas wells for Ormen Lange // Offshore Technology Conference. - 2004. - OTC 16554.
4. Ormen Lange Gas Field Project, North Sea Northern. - URL: https://www.offshore-technology.com/projects/ormen-lange-field/(дата обращения 01.03.2021).
5. Natural Resources Canada. BASIN Database. - URL: http://basin.gdr.nrcan.gc.ca (дата обращения 01.03.2021).
6. Sable Offshore Energy Project. - URL: https://www.cnsopb.ns.ca/offshore-activity/current-activity/sable-offshore (дата обращения 01.03.2021).
7. Deep Panuke Offshore Gas Development Project. - URL: https://www.cnsopb.ns.ca/offshore-activity/current-activity/deep-panuke (дата обращения 01.03.2021).
8. Revised Big Bore Well Design Recovers Original Bayu-Undan Production Targets / L.B. Ledlow, W.W. Gilbert, N.P. Omsberg, G.J. Mencer, D.P. Jamieson // SPE Annual Technical Conference and Exhibition. - 2008. - SPE 114011.
9. Australian Government. Geoscience Australia. - URL: http://dbforms.ga.gov.au (дата обращения 01.03.2021).
10. Bayu-Undan, Timor Sea. - URL: https://www.offshore-technology.com/projects/bayu-undan/(дата обращения 01.03.2021).
11. Gorgon Gas Fields, Northern Carnarvon Basin. - URL: https://www.offshore-technology.com/projects/gorgon/(дата обращения 01.03.2021).
12. Optimizing the Deepwater Completion Process: Case History of the Tamar 8 Completion design, Execution and Initial Performance - Offshore Israel / J. Healy, St.M. Waggoner, I. Magin, M. Beavers, K. Williams, R. Hebert // IADC/SPE Drilling Conference and Exhibition. - 2018. - SPE-189637.
13. Tamar Natural Gas Field. - URL: https://www.offshore-technology.com/projects/tamar-field/(дата обращения 01.03.2021).
14. Design, Installation, and Performance of Big Bore (9-5/8 in.) Completions: Mari-B Field, Offshore Israel / J. Healy, J. Sanford, D. Reeves, K. Dufrene, P. Haskell, M. Luyster, Dr.V. Bariudin // SPE International Symposium and Exhibition on Formation Damage Control. - 2012. - SPE 151770.
15. Completion Design, Installation, and Performance - Cannonball Fiels, offshore Trinidad / J.C. Healy, J.T. Powers, M. Maharaj, M. Ramlogan // SPE Annual Technical Conference and Exhibition. - 2007. - SPE 110524-PP.
16. Сторожева А.Е. Совершенствование гидродинамической модели Киринского месторождения для повышения эффективности разработки в условиях геологической неопределенности: дис. … канд. техн. наук. - М.: РГУ нефти и газа (НИУ) имени И.М. Губкина, 2018. - 129 с.
17. Христенсен С., Джексон П., Чоловский В. Освоение Лунского месторождения проекта "Сахалин II" газовыми скважинами большого диаметра // Нефт. хоз-во. - 2004. - № 9.- С. 38-39.
18. Дзюбло А.Д., Макарова А.Ю., Шнип О.А. Особенности состава и свойства продуктивных пород дагинского горизонта месторождений Киринского блока // Нефть, газ и бизнес. - 2014. - № 12. - С. 37-44.
19. Кроха В.А., Шибакин С.И. Эксплуатация Киринского газоконденсатного месторождения // Газовая промышленность. - 2016. - № 1.- С. 93-95.
20. Анализ гидродинамических исследований скважин и оценка добычной возможности газовых залежей месторождений Киринского блока / Б.А. Никитин, А.Д. Дзюбло, А.Б. Золотухин, А.Е. Сторожева // Вестник ассоциации буровых подрядчиков. - 2015. - № 2. - С. 20-25.
21. Медведев С.Г., Соловьев С.Г., Лузин А.А. Опыт разработки Юрхаровского нефтегазоконденсатного месторождения с использованием горизонтальных скважин // Науч.-технич. сб. Вести газовой науки. - 2014. - № 4(20).- С. 23-33.