Top.Mail.Ru

Scientific and technical journal

«Oilfield engineering»

ISSN 0207-2351

Building of absolute permeability model for terrigenous unconsolidated reservoir of superheavy oil field

UDC: 622.276.031:53
DOI: -

Authors:

IVANOV D.A.1,
PCHELA K.V.2,
OSOKIN A.S.2,
USHAKOVA A.S.3,4,
DIEVA N.N.5,
KRAVCHENKO M.N.5

1 LUKOIL-Engineering, Moscow, Russia
2 SamaraNIPIneft, Samara, Russia
3 Sergo Ordzhonikidze Russian State university for Geological Prospecting, Moscow, Russia
4 Institute of Oil and Gas Problems, Russian Academy of Science, Moscow, Russia
5 National University of Oil and Gas "Gubkin University", Moscow, Russia

Keywords: unconsolidated sandstone, absolute permeability model, clay minerals, facies analysis, geological modeling, hydrodynamic modeling, heavy oils, core analysis, early diagenesis

Annotation:

Large vertically integrated oil and gas companies aim to build comprehensive models and digital twins for all key production projects using the maximum data set to achieve the most accurate forecast possible. Geology traditionally represents the most complex segment in modeling due to its diverse datasets that are extremely difficult to integrate into a unified digital platform. Modern approaches to geological modeling involve obtaining detailed information on lithology and facies distribution. Classical methods used when constructing reservoir simulation models often result in a loss of important details and geological data. The most challenging and sensitive characteristic is a permeability model. Its indicators influence many technical decisions. Methods of modern petro-physical logging tools and special core studies significantly expand understanding of reservoirs – including their lithological composition, mineralogy, and pore space structure. Increased volumes and quality of data combined with advances in computational technologies allow using more flexible algorithms for permeability modeling and other reservoir properties. Current methodologies are integrated into a single process of building petro-physical, geological, and hydrodynamic models. Detailed description of rocks heterogeneity caused by various sedimentation conditions and early stages of transformation (eodiagenesis) noticeably improves the quality of the permeability model and enhances forecasts. Accuracy of such models directly affects the correctness of reservoir simulation settings and reliability of predictions, including well productivity estimates. Application of these methods at the well design stage contributes to increased technological efficiency. The proposed approach is illustrated by an example from a specific field, detailing its geological characteristics and applied permeability model. It provides complete insight into how geological factors affect operational performances and helps reducing uncertainty of development dynamics estimation by optimizing placement of new wells.

Bibliography:

1. Ivanov D.A. Geologicheskie kharakteristiki, svoystva flyuidov i tekhnologicheskie osobennosti dobychi v samom krupnom v mire Orinokskom basseyne sverkhvysokovyazkoy nefti // Neftegazovaya geologiya. Teoriya i praktika. – 2024. – T. 19, № 4. – URL: https://www.ngtp.ru/rub/2024/33_2024.html

2. Joshi S.D. Augmentation of Well Productivity With Slant and Horizontal Wells (includes associated papers 24547 and 25308) // J. Pet. Technol. – 1988. – Vol. 40. – Р. 729–739. – DOI: 10.2118/15375-PA

3. Ivanov D.A., Gudoshnikov A.S., Markes R. Osobennosti razrabotki bloka mestorozhdeniya sverkhvyazkoy, sverkhtyazheloy nefti na estestvennom rezhime vytesneniya (neftyanoy poyas Orinoko) // Neftegazovaya geologiya. Teoriya i praktika. – 2024. – T. 19, № 3. – URL: https://www.ngtp.ru/rub/2024/26_2024.html

4. Reservoir Quality of Clastic and Carbonate Rocks: Analysis, Modelling and Prediction / P.J. Armitage, A.R. Butcher, J.M. Churchill [et al.] // Geological Society, London, Special Publications. – 2018. – 435. – DOI: 10.1144/SP435.21

5. Carmen P.C. Fluid Flow through Granular Beds // Trans. AIChE. – 1937. – Vol. 15. – P. 150–166.

6. Pittman E.D. Relationship of Porosity and Permeability to Various Parameters Derived from Mercury Injection-Capillary Pressure Curves for Sandstone // AAPG Bulletin. – 1992. – Vol. 76(2). – P. 191–198.

7. Enhanced Reservoir Description: using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells / J.O. Amaefule, M. Altunbay, D. Tiab [et al.] // Paper SPE 26436 presented at the SPE Annual Technical Conference and Exhibition, Houston, Texas, 3–6 October 1993.

8. Metodika interpretatsii dannykh GIS dlya opredeleniya geologicheskoy neodnorodnosti produktivnykh peschano-alevrito-glinistykh porod devona Romashkinskogo mestorozhdeniya / V.S. Afanas’ev, A.V. Afanas’ev, S.V. Afanas’ev, V.V. Ter-Stepanov // Karotazhnik. – 2009. – № 3(180). – S. 92–112.

9. Akhmetov R.T., Mukhametshin V.V., Kuleshova L.S. Ispol’zovanie gantel’noy modeli dlya opredeleniya absolyutnoy pronitsaemosti kollektorov po krivym kapillyarnogo davleniya // Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy. – 2019. – № 4(328). – S. 52–56. – DOI: 10.30713/2413-5011-2019-4(328)-52-56

10. Utochnenie kuba pronitsaemosti geologo-gidrodinamicheskikh modeley v usloviyakh razlichnogo ob"ema iskhodnykh dannykh / N.D. Kozyrev, A.G. Mengaliev, A.A. Kochnev, S.N. Krivoshchekov // Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy. – 2021. – № 5(353). – S. 24–29. – DOI: 10.33285/2413-5011-2021-5(353)-24-29

11. Timur A. An Investigation of Permeability, Porosity, and Residual Water Saturation Relationships for Sandstone Reservoirs // The Log Analyst. – 1968. – Vol. 9(4). – P. 8–17.

12. Tixier M.P. Evaluation of Permeability from Electric-Log Resistivity Gradients // Oil and Gas J. – June 16 1949.

13. Xu C., Torres-Verdín C. Rock-Type Based Analysis of Hydration Water Effect on Capillary Pressure in Shaly Sand Formations: a Case Study in a Deltaic Gas Reservoir, Offshore Trinidad // J. of Petroleum Science and Engineering (submitted for review). – 2013.

14. Connate water saturation–Irreducible or not: The key to reliable hydraulic rock typing in reservoirs straddling multiple capillary windows / Ch. Xu, C. Torres-Verdín, Q. Yang, L. D-F Elton // SPE J. – 2013. – DOI: 10.2118/166082-MS

15. Khabarov A.V., Volokitin Ya.E. Otsenka pronitsaemosti terrigennykh plastov-kollektorov po kernu, karotazhu i promyslovym dannym // Karotazhnik. – 2009. – № 12(189). – S. 167–211.

16. Jongkittinarukorn K., Tiab D. Identification of flow units in shaly sand reservoirs // J. of Petroleum Science and Engineering. – 1997. – Vol. 17, Issues 3–4. – P. 237–246. – DOI: 10.1016/S0920-4105(96)00046-0

17. A new approach in petrophysical rock typing / A. Mirzaei-Paiaman, M. Ostadhassan, R. Rezaee [et al.] // J. of Petroleum Science and Engineering. – 2018. – Vol. 166. – P. 445–464. – doi: 10.1016/j.petrol.2018.03.075

18. Field Application of a Modified Kozeny-Carmen Correlation to Characterize Hydraulic Flow Units / H. Nooruddin, M.E. Hossain, Sh. Sudirman, T. Sulaimani // Paper presented at the SPE/DGS Saudi Arabia Section Technical Symposium and Exhibition, Al-Khobar, Saudi Arabia, 2011. – DOI: 10.2118/149047-MS

19. Mohammad I., Ghalambor A. A New Approach in Permeability and Hydraulic-Flow-Unit Determination // SPE Res. Eval. & Eng. – 2013. – Vol. 16. – P. 257–264. – doi: 0.2118/151576-PA

20. Ghanbarian B., Lake L. W., Sahimi M. Insights Into Rock Typing: A Critical Study // SPE J. – 2019. – Vol. 24. – P. 230–242. – DOI: 10.2118/191366-PA