Development of jet equipment for cleaning borehole and bottom-hole zone in cavitation conditions
UDC: 622.276.6:532.525
DOI: -
Authors:
PAKHLYAN IRINA A.
1
1 Kuban State Technological University, Krasnodar, Russian Federation
Keywords: cavitation, oil wells, bottom-hole cleaning, jet installation, cavitation generator, sand-clay plugs
Annotation:
The borehole and bottom-hole area must be cleaned before all workover operations. From year to year, the number of workover operations of depleted oil fields, such as, for example, the oil fields of the Krasnodar region, is growing. However, known systems are often ineffective in processing cemented and clay-sand plugs due to insufficient hydrodynamic action. For some time now, attention has been paid to the possibility to utilize cavitation to clean the walls of wells from contamination. This article presents a new methodology for the design of cavitation systems for jet cleaning of borehole developed on the basis of the analysis of new achievements in the theory and practice of cavitation technologies. It is shown that for the fragmentation of mineral aggregates under the action of cavitation, from which borehole plugs are composed, an energy supply in the range of 12–60 kJ/l is required, and a hydrodynamic cavitation generator provides the creation of a stable effective cloud of cavitation bubbles with a cavitation number in the range of 0,7–1,7. Optimal cavitation generators have the shape of a Venturi tube with a 6–7° angle of divergence of the conical discharge section. A number of submersible jet devises have been developed that implement cavitation flow. The novelty and uniqueness of the developed devices is confirmed by patents for the invention. The devices have passed pilot tests on wells.
Bibliography:
1. Kabdesheva Zh.E. Razrabotka tekhnologij ekspluatacii skvazhin i obrabotki prizabojnoj zony strujnymi nasosami: dis. … kand. tekhn. nauk: 25.00.17. – M., 2003. – 171 s.
2. Pahlyan I.A. Analiz sovremennyh predstavlenij o processe skhlopyvaniya kavitacionnogo puzyr’ka s tochki zreniya primenimosti k raschetu strujnyh ustanovok dlya neftegazovyh tekhnologij // Trudy Rossijskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina. – 2024. – № 2 (315). – S. 114–128.
3. Dynamics of laser-induced bubble pairs / B. Han, K. Kohler, K. Jungnickel [et al.] // J. Fluid Mech. – 2015. – Vol. 771. – P. 706–742.
4. Plesset M.S., Chapman R.B. Collapse of an initially spherical vapor cavity in the neighbourhood of a solid boundary // J. Fluid Mech. – 1971. – Vol. 47, part 2. – P. 283–290.
5. Jing Luo, Zhipan Niu. Jet and Shock Wave from Collapse of Two Cavitation Bubbles // Nature: Scientific Reports. – 2019. – 04 Feb. – Vol. 9.
6. Delmas H., Barthe L. Ultrasonic mixing, homogenization, and emulsification in food processing and other applications // Power Ultrasonics: Applications of High-Intensity Ultrasound. – Elsevier, 2015. – P. 757–791.
7. Visualisation of acoustic cavitation effects on suspended calcite cristals / R.M. Wagterveld, L. Boels, M.J. Mayer, G.J. Witkamp // Ultrasonics Sonochemistry. – 2011. – Vol. 18. – P. 216–225.
8. Kaiser M., Berhe A.A. How does sonification affect the mineral and organic constituents of soil aggregates? A review // Journal Plant Nutrient Soil Science. – 2014. – Vol. 177. – P. 479–495.
9. Scale-up disaggregation of palygorskite crystal bundles via ultrasonic process for using as potential drilling fluid / J. Xu, W. Wang, Y. Lu [et al.] // Ultrasonic Sonochemistry. – 2022. – Vol. 89. – P. 106–128.
10. Mancuso G., Langone M., Andreottola G. A critical review of the current technologies in wastewater treatment plants by using hydrodynamic cavitation process: principles and applications // Journal of Environmental Health Science and Engineering. – 2020. – Vol. 18. – P. 311–333.
11. The issue of cavitation number value in studies of water treatment hydrodynamic cavitation / A. Sarc, T. Stepisnic-Perdih, M. Petcovsek, M. Dular // Ultrasonics Sonochemistry. – 2017. – Vol. 34. – P. 51–59.
12. Omel’yanyuk M.V., Pahlyan I.A. Issledovaniya generatorov kavitacii dlya processov vibrovolnovoj raskol’matacii dobyvayushchih skvazhin // Oborudovanie i tekhnologii dlya neftegazovogo kompleksa. – 2022. – № 5. – S. 15–19.
13 Omel’yanyuk M.V., Pahlyan I.A. Povyshenie effektivnosti osvoeniya i ekspluatacii dobyvayushchih skvazhin za schet primeneniya impul’sno-udarnogo, kavitacionnogo vozdejstviya na priskvazhinnuyu zonu produktivnogo plasta // Neftepromyslovoe delo. – 2014. – № 11. – S. 19–23.
14. Pat. 2563896 Ros. Federaciya, MPK E21V 37/00. Pogruzhnaya ezhekcionnaya ustanovka dlya ochistki zaboya skvazhin ot peschanyh probok v usloviyah anomal’no nizkogo plastovogo davleniya / I.A. Pakhlyan. – № 2014141096; zayavl. 10.10.2014; opubl. 27.09.2015, Byul. № 27.