Potential of inertial friction welding in manufacturing bimetallic ignition plug electrodes for engines
UDC: 621.791.14
DOI: -
Authors:
YAKHIN AZAT V.
1,
MEDVEDEV ALEKSANDR YU.
1,
PAUTOV ANATOLIY N.
1,
UDALOVA ELENA A.
2,
KHUZIYEV ILDAR F.
1,
KHALITOV ALSYN G.
1
1 Ufa University of Science and Technology, Ufa, Russian Federation
2 Ufa State Petroleum Technological University, Ufa, Russian Federation
Keywords: bimetallic electrode, dissimilar metal joining, flywheel energy, heat input, inertial friction welding, MST-35M, nickel, spark plug, tungsten, welding mode
Annotation:
In the presented material, the authors consider explores the feasibility of using the inertial friction welding process for manufacturing bimetallic ignition plug electrodes on the MST-35M unit. The energy characteristics of the equipment and the heat input during welding of small-diameter rods are assessed. The flywheel energy potential of the unit for inertial welding is analyzed. The results demonstrate sufficient stored energy for welding rods with a diameter of 7–9 mm. The use of the inertial welding mode is confirms to be a promising approach in the production of bimetallic components.
Bibliography:
1. Lifshic B.G., Karposhin V.S., Lineckij Ya.L. Fizicheskie svojstva metallov i splavov. – M.: Metallurgiya, 1980. – S. 13–17.
2. Lebedeva K.V., Fedorova E.B. Analiz primeneniya tekhnologii lazernoj svarki dlya izgotovleniya trub teploobmennyh apparatov // Oborudovanie i tekhnologii dlya neftegazovogo kompleksa. – 2022. – № 4 (130). – S. 10–15.
3. Razvitie oborudovaniya dlya realizacii processov rotacionnoj svarki treniem / A.V. Yahin, A.Yu. Medvedev, E.A. Udalova [i dr.] // Istoriya nauki i tekhniki. – 2024. – № 4. – S. 17–22.
4. Utkin I.Yu., Ponomarenko D.V. Vliyanie razlichnyh sposobov termicheskoj obrabotki na mikrostrukturu i mekhanicheskie svojstva smodelirovannoj zony peregreva svarnyh soedinenij otvodov dlya gazoprovodov // Oborudovanie i tekhnologii dlya neftegazovogo kompleksa. – 2021. – № 3 (123). – S. 18–21. – DOI: 10.33285/1999-6934-2021-3(123)-18-21
5. Sovremennye metody sborki korpusov vertikal’nyh stal’nyh rezervuarov i metody kontrolya ee vypolneniya / E.I. Velichko, V.V. Dubov, A.E. Nizhnik, A.V. Muzykantova // Stroitel’stvo neftyanyh i gazovyh skvazhin na sushe i na more. – 2021. – № 5 (341). – S. 47–55. – DOI: 10.33285/0130-3872-2021-5(341)-47-55
6. Winiczenko R., Skibicki A., Skoczylas P. The experimental and FEM studies of friction welding process of tungsten heavy alloy with aluminium alloy // Applied Sciences (Switzerland). – 2024. – Vol. 14, № 5. – Art. 2038.
7. Damodaram R., Karthik G.M., Lalam S.V. Microstructure and mechanical properties of a rotary friction welded tungsten heavy alloy // MP Materials Testing. – 2019. – Vol. 61, № 3. – P. 209–212.
8. Ambroziak A. Friction welding of titanium–tungsten pseudoalloy joints // Journal of Alloys and Compounds. – 2010. – Vol. 506, № 2. – P. 761–765.
9. Solid-state rotary friction-welded tungsten and mild steel joints / B. Skowronska, M. Bober, P. Kolodziejczak [et al.] // Applied Sciences (Switzerland). – 2022. – Vol. 12, № 18. – Art. 9034.