On the question of rational layouts of drill columns for drilling horizontal wells
UDC: 622.24.05:622.243.2
DOI: -
Authors:
SVALOV ALEXANDR M.
1
1 Oil and Gas Research Institute of the Russian Academy of Sciences, Moscow, Russian Federation
Keywords: horizontal wells, drill pipe arrangement, longitudinal stability of pipes, oval shape of pipe cross-section
Annotation:
The paper examines the possibilities of increasing the efficiency of the horizontal well drilling process through the use of rational drill pipe arrangements. Mathematical modeling shows that using large-diameter pipes reduces the force exerted on them by the borehole walls. This effect is due to a decrease in the longitudinal stability of the pipes under the compressive axial load. This results in a significantly reduction in friction, allowing for an increase in the axial load on the rock-cutting tool. It is established that the efficiency of using large-diameter drill pipes increases with increasing borehole diameter. It is shown that the use of drill pipes with an oval cross-section ensures higher efficiency of cleaning the horizontal wellbore from particles of drilled rock due to the manifestation of the mechanical scraper effect. The indicated effect is caused by the movement of the contact lines of pipes with an oval cross-section along the lower wall of the well during rotation of such pipes, which leads to a continuous displacement of particles of destroyed rock accumulating on the lower wall of the horizontal wellbore into the region of high longitudinal velocities of the drilling fluid. The use of the proposed drill pipe arrangements will improve the efficiency of horizontal well drilling.
Bibliography:
1. Wu J., Juvkam-Wold H.C. Coiled Tubing Buckling Implication in Drilling and Completing Horizontal Wells // SPE Drill & Compl. – 1995. – № 10 (1). – P. 16–21. – SPE-26336-A. – DOI: 10.2118/26336-PA
2. Tikhonov V.S., Safronov A.I., Gelfgat M.Ya. Method of Dynamic Analysis of Rod-in-Hole Buckling // Proc., 8th Biennial ASME Conference on Engineering Systems Design and Analysis, Torino, Italy, 2006, 4–7 July. – 2006. – Vol. 3. – P. 25–32. – DOI: 10.1115/ESDA2006-95059
3. Dawson R. Drill Pipe Buckling in Inclined Holes // Journal of Petroleum Technology. – 2013. – April, no. 36 (10). – P. 1734–1738. – DOI: 10.2118/11167-PA
4. The Buckling Behavior of Pipes and Its Influence on the Axial Force Transfer in Directional Wells, Proceedings / E. Kuru, A. Martinez, S. Miska, Q. Weiyong // SPE/IADC Drilling Conference, Paper No. SPE/IADC 52840, 1999, Amsterdam, Holland.
5. Svalov A.M. Effekt povysheniya debita dobyvayushchih skvazhin pri primenenii nagruzhennyh hvostovikov // Fiziko-tekhnicheskie problemy razrabotki poleznyh iskopaemyh. – 2018. – № 1. – S. 107–112.
6. Mishchenko I.T. Skvazhinnaya dobycha nefti. – M.: Neft’ i gaz, 2003. – 816 s.
7. Simonyanc S.L. Evolyuciya sposobov vrashchatel’nogo bureniya neftegazovyh skvazhin // Stroitel’stvo neftyanyh i gazovyh skvazhin na sushe i na more. – 2020. – № 4 (328). – S. 15–18. – DOI: 10.33285/0130-3872-2020-4(328)-15-18
8. Simonyanc S.L. Sovershenstvovanie vrashchatel’nyh sposobov bureniya neftegazovyh skvazhin // Stroitel’stvo neftyanyh i gazovyh skvazhin na sushe i na more. – 2024. – № 11 (383). – S. 5–8.
9. Harlamov S.N., Dzhanghorbani M. Processy transporta shlama pri ochistke skvazhin s proizvol’noj orientaciej burovyh trub, soderzhashchih ekscentrichno raspolozhennoe krugloe yadro s podvizhnoj stenkoj: problemy, rezul’taty, perspektivy (obzor) // Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. – 2020. – T. 331, № 7. – S. 131–149.
10. Heydari O., Sahraei E., Skalle P. Investigating the impact of drillpipe’s rotation and eccentricity on cuttings transport phenomenon in various horizontal annuluses using computational fluid dynamics (CFD) // Journal of petroleum science and engineering. – 2017. – Vol. 156. – P. 801–813. – DOI: 10.1016/j.petrol.2017.06.059
11. Stryukov E.G., Luk’yanenko V.A. Zakruchennye potoki v zadachah gidrodinamiki gorizontal’nyh skvazhin // Dinamicheskie sistemy. – 2011. – T. 1 (29), № 1. – S. 169–190.
12. Muhametov F.X., Levinson L.M. Razrabotka komponovki buril’noj kolonny dlya skvazhin s bol’shoj protyazhennost’yu gorizontal’nogo uchastka na shel’fe severnyh morej // Neftegazovoe delo. – 2021. – T. 19, № 2. – S. 27–36.
13. Nabiullin D.R., D’yakonov A.A., Huzina L.B. Teoreticheskie issledovaniya turbuliziruyushchej sposobnosti centratora turbinnogo s razlichnymi profilyami // Stroitel’stvo neftyanyh i gazovyh skvazhin na sushe i na more. – 2024. – № 3 (375). – S. 10–16.
14. Pat. 2457314 Ros. Federaciya, MPK E21B 17/22 (2006.01). Buril’naya truba (varianty) / D.I. Indupskij, B.C. Basovich, D.A. Lubyanyj; zayavitel’ i patentoobladatel’ Irkutskij gosudarstvennyj tekhnicheskij universitet. – № 2010136291; zayavl. 12.01.2009; opubl. 27.07.2012, Byul. № 21.
15. Pat. 2827887 C2 Ros. Federaciya, MPK E21B 37/00 (2006.01). Sposob ochistki gorizontal’nogo stvola skvazhiny v processe bureniya / A.M. Svalov; zayavitel’ i patentoobladatel’ Ministerstvo nauki i vysshego obrazovaniya Federal’noe gosudarstvennoe byudzhetnoe uchrezhdenie nauki Institut problem nefti i gaza RAN. – № 2023122362; zayavl. 29.08.2023; opubl. 03.10.2024, Byul. № 28.