Scientific and technical journal

«Environmental protection in oil and gas complex»

ISSN 2411-7013

Environmental protection in oil and gas complex
Separation of oil-water emulsions polluting the environment by acetate cellulose membranes modified by a unipole corona discharge

UDC: 628.54
DOI: 10.33285/2411-7013-2022-4(307)-14-20

Authors:

NABIEV RANIS R.1,
SHAIKHIEV ILDAR G.1,
DRYAKHLOV VLADISLAV O.1,
GALIKHANOV MANSUR F.1,
NIZAMEEV IREK R.2

1 Kazan National Research Technological University, Kazan, Russia
2 Tupolev Kazan National Research Technical University, Kazan, Russia

Keywords: oil-water emulsion, cellulose acetate membrane, corona discharge, membrane separation, hydrocarbons

Annotation:

Separation of oil-water emulsion based on oil from Carboniferous deposits by flat acetate cellulose membrane filters with a pore size of 0,45 μm was studied in order to prevent environmental pollution. To increase the resistance to oiling, cellulose acetate membranes were treated in the corona discharge field at a voltage of 5…25 kV within 1…5 min. An increase in the productivity from 2,5 to 8,6 dm3/(m2∙h) and the efficiency of emulsion separation from 80 to 99 % was revealed. Instrumental methods of the analysis proved a decrease of the wetting edge angle from 72,5 to 64,6°, a decrease of protrusions height from ≈ 1,6 to 0,5 microns, the formation of positive charges, thus indicating the course of restructuring processes that contribute to a change in the mass transfer characteristics of the filter. It was revealed that modification of membranes by corona discharge brings an increase of their productivity and the degree of oil-water emulsion purification as well as the improvement of the hydrophilic properties of the membrane itself.

Bibliography:

1. Baranov V.Ya., Frolov V.I. Izuchenie svoystv emul'siy. – M.: Neft' i gaz, 2007. – 19 s.
2. Bor'ba s oslozhneniyami: vodoneftyanye emul'sii. Issledovanie sostava i prichin obrazovaniya stoykikh vodoneftyanykh emul'siy promezhutochnogo sloya na ustanovkakh podgotovki nefti / F.A. Buryukin, A.S. Kositsyna, A.A. Koval'chuk, P.L. Shapovalov // Delovoy zhurn. Neftegaz.RU. – 2020. – № 9(105). – S. 156–161.
3. Posvyatenko N.I., Demidova Yu.E., Mel'nik T.V. Fiziko-khimicheskie metody ochistki stochnykh vod ot nefteproduktov // Vіsnik Natsіonal'nogo transportnogo unіversitetu. – 2014. – № 29-1. – S. 250–258.
4. Guslavskiy A.I., Kanarskaya Z.A. Perspektivnye tekhnologii ochistki vody i pochvy ot nefti i nefteproduktov // Vestn. Kazanskogo tekhnolog. un-ta. – 2011. – № 20. – S. 191–199.
5. Pendergast M.M., Hoek E.M.V. A review of water treatment membrane nanotechnologies // Energy and Environmental Science. – 2011. – Vol. 4, Issue 6. – P. 1946–1971. – DOI: 10.1039/C0EE00541J
6. Rational design of materials interface at nanoscale towards intelligent oil-water separation / Mingzheng Ge, Chunyan Cao, Jianying Huang [et al.] // Nanoscale Horizons. – 2018. – Vol. 3, Issue 3. – P. 235–260. – DOI: 10.1039/c7nh00185a
7. High-flux oil-water separation with superhydrophilicity and underwater superoleophobicity ZIF-67@Cu(OH)2 nanowire membrane / Jinmei He, Jiehui Li, Lili Ma [et al.] // J. of Materials Science. – 2021. – Vol. 56, Issue 4. – P. 3140–3154. – DOI: 10.1007/s10853-020-05474-w
8. Degtyareva O.G., Safronova T.I., Degtyarev G.V. Metody i tekhnicheskie sredstva po okhrane okruzhayushchey sredy pri razlive nefteproduktov // Politemat. setevoy elektron. nauch. zhurn. Kubanskogo gos. agrarnogo un-ta. – 2005. – № 9. – S. 64–83.
9. Varnakov V.V., Busygin I.A., Shkalikov E.A. Deemul'girovanie nefteproduktov kak sposob ikh ochistki // Alleya nauki. – 2018. – T. 2, № 6(22). – S. 897–901.
10. Plokhova S.E., Sattarova E.D., Elpidinskiy A.A. Izuchenie poverkhnostnykh svoystv kompozitsionnykh reagentov // Vestn. Kazanskogo tekhnolog. un-ta. – 2013. – T. 16, № 2. – S. 167–169.
11. Plokhova S.E., Sattarova E.D., Elpidinskiy A.A. Izuchenie vliyaniya anionnykh i kationnykh PAV na deemul'giruyushchuyu effektivnost' neionogennykh PAV // Vestn. Kazanskogo tekhnolog. un-ta. – 2012. – T. 15, № 16. – S. 39–40.
12. Modified cotton fabric with durable anti-fouling performance for separation of surfactant-stabilized oil-in-water emulsions / Pu Yang, Ruimin Hu, Bin Yu [et al.] // Cellulose. – 2022. – Vol. 29, Issue 6. – P. 3557–3568. – DOI: 10.1007/s10570-022-04488-8
13. Rubanov Yu.K., Tokach Yu.E. Udalenie razlivov nefteproduktov s poverkhnosti vody kompleksnymi sorbentami na osnove oksidov zheleza // Vestn. Kazanskogo tekhnolog. un.ta. – 2015. – T. 18, № 7. – S. 268–270.
14. Sewage treatment from heavy metal ions by the method of deposition, using sulfur-alkaline wastewater as a reagent / D.D. Fazullin, G.V. Mavrin, A.V. Savelyeva [et al.] // Int. J. of Green Pharmacy. – 2017. – Vol. 4, Issue 4. – P. 831–835.
15. Dubrovskaya O.G., Evstigneev V.V., Kulagin V.A. Problemy ochistki stochnykh vod, soderzhashchikh emul'girovannye nefteprodukty v oborotnykh sistemakh zamknutykh tsiklov vodopol'zovaniya, i puti ikh resheniya // Zhurn. Sib. feder. un-ta. Ser.: Tekhnika i tekhnologii. – 2013. – T. 6, № 6. – S. 680–688.
16. Dan Li, Yushan Yan, Huanting Wang. Recent advances in polymer and polymer composite membranes for reverse and forward osmosis processes // Progress in Polymer Science. – 2016. – Vol. 61. – P. 104–155. – DOI: 10.1016/j.progpolymsci.2016.03.003
17. Guo-dong Kang, Yi-ming Cao. Application and modification of poly(vinylidene fluoride) (PVDF) membranes – A review // J. of Membrane Science. – 2014. – Vol. 463. – P. 145–165. – DOI: 10.1016/j.memsci.2014.03.055
18. Intensification of separation of oil-in-water emulsions using polysulfonamide membranes modified with low-pressure radiofrequency plasma / A.V. Fedotova, I.G. Shaikhiev, V.O. Dryakhlov [et al.] // Petroleum Chemistry. – 2017. – Vol. 57, No. 2. – P. 159–164. – DOI: 10.1134/S0965544117020025
19. Effect of radiofrequency plasma treatment on the characteristics of polysulfonamide membranes and the intensity of separation of oil-in-water emulsions / A.V. Fedotova, V.O. Dryakhlov, I.G. Shaikhiev [et al.] // Surface Engineering and Applied Electrochemistry. – 2018. – Vol. 54, No. 2. – P. 174–179. – DOI: 10.3103/S1068375518020059
20. Effect of unipolar corona discharge parameters on the surface characteristics of polysulfonamide membranes and their separation efficiency for water-in-oil emulsions / M.Yu. Alekseeva, V.O. Dryakhlov, I.G. Shaikhiev [et al.] // Surface Engineering and Applied Electrochemistry. – 2020. – Vol. 56, No. 2. – P. 222–227. – DOI: 10.3103/S1068375520020027
21. Effect of parameters of the corona discharge treatment of the surface of polyacrylonitrile membranes on the separation efficiency of oil-in-water emulsions / V.O. Dryakhlov, M. Yu. Nikitina, I.G. Shaikhiev [et al.] // Surface Engineering and Applied Electrochemistry. – 2015. – Vol. 51, No. 4. – P. 406–411. – DOI: 10.3103/S1068375515040031
22. Enhanced purification of oil-in-water emulsions using polymer membranes treated in a corona-discharge field / I.G. Shaikhiev, M.F. Galikhanov, V.O. Dryakhlov [et al.]
// Chemical and Petroleum Engineering. – 2016. – Vol. 52, Issue 5-6. – P. 352–356. – DOI: 10.1007/s10556-016-0199-0
23. Modification of polymeric membranes by corona discharge / V.O. Dryakhlov, I.G. Shaikhiev, M.F. Galikhanov, S.V. Sverguzova // Membranes and Membrane Technologies. – 2020. – Vol. 2. Issue 3. – P. 195–202. – DOI: 10.1134/S2517751620030038