Scientific and technical journal

«Oilfield engineering»

ISSN 0207-2351

Oilfield engineering
Technogenic processes and their modelling approaches when developing Bazhenov formation

UDC: 622.276.1/.4
DOI: 10.33285/0207-2351-2023-3(651)-5-16

Authors:

SKOROV DANIIL S.1,2,
PYATIBRATOV PETR V.1

1 National University of Oil and Gas "Gubkin University", Moscow, Russia
2 PETEC, Moscow, Russia

Keywords: Bazhenov formation, technogenic processes, supercritical water injection, supercritical carbon dioxide injection, high-pressure air injection

Annotation:

The article considers technogenic processes that occur when developing kerogen-containing Bazhenov formation deposits applying various technologies such as thermal gas treatment, injection of supercritical carbon dioxide and super and subcritical water are considered. Some peculiar features and development of approaches to thermal hydrodynamic modeling of technogenic processes are analyzed. Based on laboratory studies and numerical simulation results, published in scientific literature, the development of Bazhenov formation reveals some common tasks, caused by common technogenic processes, as well as some specific features which are unique for each technology. Several technogenic in-situ processes during the development of Bazhenov formation deposits are typical for a wide range of development methods used for development of traditional oil resources as well. The result of the conducted research is the summary table of technogenic processes occurring throughout Bazhenov formation development.

Bibliography:

1. Kalmykov G.A., Balushkina N.S. Model’ neftenasyshchennosti porovogo prostranstva porod bazhenovskoy svity Zapadnoy Sibiri i ee ispol’zovanie dlya otsenki resursnogo potentsiala. – M.: GEOS, 2017. – 247 c.

2. Simulation of Thermal Recovery Methods for Development of the Bazhenov Formation / A.A. Erofeev [et al.] // SPE 182131-RU. – 2016. – DOI: 10.2118/182131-RU

3. Bokserman A.A. Termogazovyy metod uvelicheniya nefteotdachi // Georesursy. – 2007. – № 3(22). – C. 18–20.

4. Nazarova L.N., Skorov D.S. Kompleksnaya tekhnologiya vozdeystviya na kerogensoderzhashchie plasty bazhenovskoy svity // Neft. khoz-vo. – 2020. – № 3. – C. 14–17. – DOI: 10.24887/0028-2448-2020-3-14-17

5. Mironov D.T., Vol’pin S.G., Yudin V.A. Tekhnologicheskie podkhody pri ekspluatatsii skvazhin bazhenovskoy svity i otsenka vozmozhnosti podklyucheniya v razrabotku resursov nedreniruemykh zon // Vestnik kibernetiki. – 2018. – № 3(31). – C. 233–246.

6. Hydrocarbon Saturation for an Unconventional Reservoir in Details / E. Mukhina [et al.] // SPE 19674-RU. – 2019. – DOI: 10.2118/196743-RU

7. Eksperimental’naya otsenka kolichestva obrazuyushcheysya nefti pri nizkotemperaturnom pirolize kerogensoderzhashchey porody / E.A. Nikitina [i dr.] // Neft. khoz-vo. – 2017. – № 12. – C. 132–134. – DOI: 10.24887/0028-2448-2017-12-132-134

8. Chislennaya realizatsiya mekhanizma termogazovogo vozdeystviya na dvumernoy modeli / A.M. Shakhmaev [i dr.] // Ekspozitsiya Neft’ Gaz. – 2018. – № 1(61). – C. 39–45.

9. Glotov A.V., Mikhaylov N.N. Vliyanie "masshtabnogo" faktora na svoystva porod bazhenovskoy svity // Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy. – 2020. – № 6(342). – C. 42–48. – DOI: 10.30713/2413-5011-2020-6(342)-42-48

10. Laboratornye issledovaniya zakachki vozdukha v kerogensoderzhashchie porody. Chast’ 1. Otrabotka metodov upravleniya frontom goreniya / T.M. Bondarenko [i dr.] // Neft. khoz-vo. – 2020. – № 6. – C. 46–50. – DOI: 10.24887/0028-2448-2020-6-46-50

11. The effects of pressure and hydrocarbon expulsion on hydrocarbon generation during hydrous pyrolysis of type-I kerogen in source rock / Y. Wu [et al.] // J. of Natural Gas Science and Engineering. – 2016. – № 34. – P. 1215–1224. – DOI: 10.1016/j.jngse.2016.08.017

12. CMG STARS User’s Guide. – 2019.

13. Validatsiya chislennoy modeli protsessa zakachki vozdukha vysokogo davleniya na mestorozhdenii bazhenovskoy svity na osnove rezul’tatov fizicheskogo modelirovaniya / L.A. Khakimova [i dr.] // Neft. khoz-vo. – 2017. – № 4. – C. 85–89. – DOI: 10.24887/0028-2448-2017-4-85-89

14. Upscaling for field-scale in-situ combustion simulation / Z. Zhu [et al.] // SPE Annual Tech. Conf. and Exhibition. – 2011. – DOI: 10.2118/144554-MS

15. Integrated modeling of in-situ combustion from laboratory to field scale / Z. Zhu [et al.] // SPE Western Regional Meeting. – 2019. – DOI: 10.2118/195314-MS

16. Variatsii sostava bitumoidov v zavisimosti ot tipa porovogo prostranstva i termicheskoy zrelosti organicheskogo veshchestva v porodakh bazhenovskoy svity / M.S. Tikhonova [i dr.] // Novye idei v geologii nefti i gaza: sb. nauch. tr. – 2019. – S. 488–493.

17. Kompleksnyy podkhod k issledovaniyu protsessov zakachki vozdukha v plast dlya povysheniya nefteotdachi / A.V. Vasil’evskiy [i dr.] // Neft. khoz-vo. – 2016. – № 11. – C. 102–104.

18. Nikitina E.A., Tolokonskiy S.I., Shchekoldin K.A. Analiz rezul’tatov laboratornykh issledovaniy i promyslovykh rabot po primeneniyu termogazovogo metoda uvelicheniya nefteotdachi // Neft. khoz-vo. – 2018. – № 9. – C. 62–67. – DOI: 10.24887/0028-2448-2018-9-62-67

19. Nikitina E.A., Tolokonskiy S.I., Grishin P.A. Osobennosti teplovogo vozdeystviya na kerogensoderzhashchuyu porodu bazhenovskoy svity // Neft. khoz-vo. – 2017. – № 2. – C. 68–71.

20. The Differentiated Approach of the Reserves Estimation for Source Rock Formations / A.D. Alekseev [et al.] // SPE Russian Petroleum Technology Conf. and Exhibition, Moscow, Russia, 2016. – DOI: 10.2118/182074-MS

21. Matematicheskoe modelirovanie termokhimicheskogo povedeniya nepronitsaemoy poristoy sredy / M.V. Alekseev [i dr.] // Vestn. MGTU im. N.E. Baumana. Ser. Estestvennye nauki. – 2020. – T. 91, № 4. – C. 4–23. –DOI: 10.18698/1812-3368-2020-4-4-23

22. Poristost’ i neftenasyshchennost’ porod bazhenovskoy svity / A.E. Kontorovich [i dr.] // Geologiya nefti i gaza. – 2018. – № 5. – C. 61–73. – DOI: 10.31087/0016-7894-2018-5-61-73

23. Analiz izmeneniya svoystv porod bazhenovskoy svity v rezul’tate zakachki vozdukha vysokogo davleniya na osnove laboratornogo modelirovaniya / T.M. Bondarenko [i dr.] // Neft. khoz-vo. – 2017. – № 3. – C. 40–44. – DOI: 10.24887/0028-2448-2017-3-40-44

24. Otsenka potentsiala teplovogo vozdeystviya dlya stimulirovaniya razrabotki zalezhey bazhenovskoy svity po rezul’tatam eksperimental’nykh issledovaniy / A.A. Erofeev [i dr.] // Vestn. Moskovskogo universiteta. Ser. 4. Geologiya. – 2017. – № 4. – C. 39–47. – DOI: 10.33623/0579-9406-2017-4-39-47

25. Otsenka izmeneniya fil’tratsionno-emkostnykh svoystv porod bazhenovskoy svity v protsesse modelirovaniya gidrotermal’nogo vozdeystviya / E.Yu. Popov [i dr.] // Neft. khoz-vo. – 2017. – № 3. – C. 45–49. – DOI: 10.24887/0028-2448-2017-3-45-49

26. Termicheskie preobrazovaniya skeleta porod pri dobyche nefti s zakachkoy v plast vozdukha / V.A. Yudin [i dr.] // Tr. nauchno-issledovatel’skogo instituta sistemnykh issledovaniy Rossiyskoy akademii nauk. – 2015. – T. 5, № 2. – C. 22–32.

27. Zoback M.D., Kohli A.H. Unconventional Reservoir Geomechanics. – Cambridge, UK: Cambridge University Press, 2019. – 484 p. – DOI: 10.1017/9781316091869

28. New technique for determining geomechanical properties of highly heterogeneous samples with the help of uniaxial compression stage and micro-computed tomography / E.D. Shilov [et al.] // 51st US Rock Mechanics Geomechanics Symposium, San Francisco, California, USA, 25–28 June 2017.

29. Kozyaev A.A., Shchukovskiy R.M., Zakrevskiy K.E. Modelirovanie treshchinovatosti. Praktikum po DFN v Petrel 2016–2019. – M.: Izd-vo MAI, 2019. – 96 c.

30. Bokserman A.A., Vol’pin S.G., Mironov D.T. Osobennosti modelirovaniya MUN dlya usloviy primeneniya termogazovogo metoda uvelicheniya nefteotdachi v razlichnykh geologo-fizicheskikh usloviyakh // Sever Rossii: strategii i perspektivy razvitiya: materialy II Vseros. nauch.-prakt. konf. – 2016. – T. 2. – S. 8–19.

31. Experimental and Computational Complex for Determination of the Effectiveness of Cyclic Carbon Dioxide Injection for Tight Oil Reservoirs / E. Popov [et al.] // SPE Russian Petroleum Technology Conf. and Exhibition. – SPE-181918-MS. – 2016. – DOI: 10.2118/181918-MS

32. Rol’ razlichnykh vidov migratsii uglevodorodov v formirovanii zalezhey nefti i gaza v Zapadnoy Sibiri (na osnove geokhimicheskikh dannykh) / I.V. Goncharov [i dr.] // Neft. khoz-vo. – 2016. – № 4. – C. 12–17.

33. Enhanced oil recovery in liquid-rich shale reservoirs: Laboratory to field / N. Alharthy [et al.] // SPE Annual Techn. Conf. and Exhibition. – 2015. – DOI: 10.2118/175034-MS

34. Carbon dioxide injection pressure and reservoir temperature impact on oil recovery from unconventional shale reservoirs during cyclic CO2 injection: An experimental study / S. Fakher [et al.] // Carbon Management Technology Conf. – 2019. – DOI: 10.7122/CMTC-558561-MS

35. Land C.S. Calculation of Imbibition Relative Permeability for Two- and Three-Phase Flow From Rock Properties // Society of Petroleum Engineers J. – 1968. – № 02(8). – P. 149–156. – DOI: 10.2118/1942-PA

36. Carlson F.M. Simulation of Relative Permeability Hystersis To the Nonwetting Phase // Presented at the 56th Annual Fall Technical Conf. and Exhibition, San Antonio, 5–7 Oct. 1981. – SPE-10157. – DOI: 10.2118/10157-MS

37. Mironov D.T., Yalov P.V. Otsenka vliyaniya gisterezisa otnositel’nykh fazovykh pronitsaemostey pri provedenii termogazovogo vozdeystviya s zakachkoy vodovozdushnoy smesi // Tr. nauchno-issledovatel’skogo instituta sistemnykh issledovaniy Rossiyskoy akademii nauk. – 2020. – T. 10, № 5–6. – C. 83–90.

38. Advanced methods of thermal petrophysics as a means to reduce uncertainties during thermal eor modeling of unconventional reservoirs / E. Chekhonin [et al.] // Geosciences (Switzerland). – 2021. – Vol. 11, № 5. – DOI: 10.3390/geosciences11050203

39. Ionno-solevoy kompleks porod bazhenovskoy svity Zapadnoy Sibiri / E.S. Kazak [i dr.] // Vestn. Moskovskogo universiteta. Ser. 4. Geologiya. – 2017. – № 4. – C. 68–75. – DOI: 10.33623/0579-9406-2017-4-68-75

40. Wang L. Clay stabilization in sandstone reservoirs and the perspectives for shale reservoirs // Advances in Colloid and Interface Science. – 2020. – Vol. 276. – P. 58. – DOI: 10.1016/j.cis.2019.102087

41. Norrish K. The swelling of montmorillonite // Discussions of the Faraday Society. – 1954. – Vol. 18. – P. 120–134. – DOI: 10.1039/DF9541800120

42. Clay swelling diagrams: Their applications in formation damage control / Z. Zhou [et al.] // SPE J. – 1997. – Vol. 2(2). – P. 99–106. – DOI: 10.2118/31123-PA

43. Khilar K.C., Fogler H.S. The existence of a critical salt concentration for particle release // J. of Colloid And Interface Science. – 1984. – Vol. 101, № 1. – P. 214–224. – DOI: 10.1016/0021-9797(84)90021-3

44. Effect of electrostatic interaction on the retention and remobilization of colloidal particles in porous media / A.K. Kottsova [et al.] // Colloids and Surfaces A: Physicochemical and Engineering Aspects. – 2021. – Vol. 617. – P. 126371. – DOI: 10.1016/j.colsurfa.2021.126371