Scientific and technical journal

«Automation and Informatization of the fuel and energy complex»

ISSN 0132-2222

Automation and Informatization of the fuel and energy complex
Influence of the initial data uncertainty on the assessment of the possibility of hydrate formation in a reservoir during well operation

UDC: 622.279+519.6+510.644.4
DOI: 10.33285/0132-2222-2021-12(581)-35-42

Authors:

KOCHUEVA OLGA NIKOLAEVNA1,
TSYGANKOV VADIM ANDREEVICH1

1 National University of Oil and Gas "Gubkin University", Moscow, Russian Federation

Keywords: hydrate formation, bottomhole formation zone, uncertainty of initial data, robustness of simulation results, fuzzy set theory

Annotation:

The article deals with a problem of assessing the influence the initial data uncertainty when analyzing possibility of gas hydrates formation in a bottomhole formation zone. An assessment of a hydrate formation risk is based on modeling of a non-isothermal process of gas filtration and comparing the obtained data of temperature and pressure conditions in the bottomhole formation zone with the equilibrium conditions of hydrate formation. Mathematical model is a system of the partial differential equations based on the equations of continuity, energy balance, gas state and Darcy's law. The solution of equations system can be obtained by the finite-difference methods. The coefficients of the equations system include the parameters of the reservoir and gas: permeability, reservoir porosity, heat capacity and thermal conductivity of gas, coefficients of dynamic viscosity of gas, gas compressibility. Determination of their exact values presents significant difficulties. The description of the initial parameters uncertainty in terms of the theory of fuzzy sets is proposed. The article studies the model sensitivity to the error of methods for calculating the coefficient of gas compressibility. The graphs, revealing the changes in pressure and temperature values along the radial coordinate in the bottomhole zone taking into account the permissible error, when calculating gas compressibility coefficient, as well as the deviation that occurs when an iterative procedure for calculating the compressibility coefficient is replaced by a simplified correlation are shown. It is concluded that the method for calculating the compressibility factor has a rather weak effect on the results of pressure calculation, but as for temperature, this effect cannot be neglected.

Bibliography:

1. Gidratoobrazovaniye v prizaboynoy zone plasta pri osvoyenii turonskikh zalezhey Zapadnoy Sibiri / V.A. Istomin, P.A. Moiseykin, V.N. Abrashov [i dr.] // Vesti gazovoy nauki. – 2013. – № 5. – S. 99–104.
2. Charnyy I.A. Podzemnaya gidrogazomekhanika. – M.: Gostoptekhizdat, 1963. – 396 s.
3. Chekalyuk E.B. Termodinamika neftyanogo plasta. – M.: Nedra, 1965. – 240 s.
4. Ponomarev A.I., Zaripova K.R. Chislennoye modelirovaniye neizotermicheskoy nestatsionarnoy fil’tratsii gaza dlya razlichnykh postanovok zadachi // Neftegazovoye delo: elektron. nauch. zhurnal. – 2013. – № 3. – S. 228–262.
5. Borodin S.L. Chislennyy algoritm resheniya zadachi odnomernoy radial’noy neizotermicheskoy fil’tratsii gaza // Vestn. Tyumenskogo gos. un-ta. Fiziko-matematicheskoye modelirovaniye. Neft’, gaz, energetika. – 2015. – № 4. – C. 58–68.
6. Musakayev N.G., Borodin S.L. Otsenka vozmozhnosti gidratoobrazovaniya v plaste pri dobyche gaza // Neft’ i gaz Zapadnoy Sibiri: materialy mezhdunar. nauch.-tekhn. konf., posvyashchennoy 90-letiyu so dnya rozhdeniya A.N. Kosukhina, Tyumen’, 15–16 okt. 2015 g. – Tyumen’: Izd-vo TyumGNGU, 2015. – S. 284–290.
7. Kanevskaya R.D. Matematicheskoye modelirovaniye gidrodinamicheskikh protsessov razrabotki mestorozhdeniy uglevodorodov. – Izhevsk: In-t komp’yuternykh tekhnologiy, 2002. – 140 s.
8. Zadeh L.A. The concept of a linguistic variable and its application to approximate reasoning // Information Sciences. – 1975. – Vol. 8, Issue. 3. – P. 199–249.
9. Itkin V.Yu., Kochueva O.N. Metody nechetkoy logiki v zadachakh neftegazovoy otrasli: ucheb. posobiye. – M.: RGU nefti i gaza (NIU) imeni I.M. Gubkina, 2021.
10. Kochueva O.N., Itkin V.Yu. Prognozirovaniye stabil’nosti vodoneftyanykh emul’siy na osnove metodov nechetkoy logiki // Sovremennaya nauka: aktual’nyye problemy teorii i praktiki. Ser. Estestvennyye i tekhnicheskiye nauki. – 2019. – № 3-2. – S. 67–69.
11. Kochueva O.N., Zaynetdinova L.G. Approksimatsiya zavisimosti koeffitsiyenta gidravlicheskogo soprotivleniya ot chisla Reynol’dsa s primeneniyem apparata nechetkikh mnozhestv // Avtomatizatsiya, telemekhanizatsiya i svyaz’ v neftyanoy promyshlennosti. – 2020. – № 4(561). – S. 68–71. – DOI: 10.33285/0132-2222-2020-4(561)-68-71
12. Prediction of Hydrate Phase Equilibrium Conditions for Different Gas Mixtures / D. Sadeq, S. Iglauer, M. Lebedev, A. Barifcani // SPE Conference Proceedings Offshore Technology Conference Asia. – Kuala Lumpur, Malaysia, 20–23 March 2018.
13. Modeling of Gas Hydrate Equilibrium Conditions in Porous Media / Ma Qinglan, Chen Litao, Mu Qiuyan [et al.] // SPE Proceedings of the Twenty-second (2012) International Offshore and Polar Engineering Conference Rhodes. – Greece, 17–22 June 2012.
14. Salufu S., Nwakwo P. New Empirical Correlation for Predicting Hydrate Formation Conditions // SPE Nigeria Annual International Conference and Exhibition held in Lagos. – Nigeria, 5–7 August 2013.
15. Chavoshi S., Safamirzaei M., Shariati F.P. Evaluation of Empirical Correlations for Predicting Gas Hydrate Formation Temperature // Gas Processing J. – 2018. – Vol. 6, No 2. – Р. 15–36. – DOI: http://dx.doi.org/10.22108/gpj.2018.112052.1036
16. Shostak N.A., Zaporozhets E.P. Raschety gidratnykh protsessov. – Krasnodar: Izd. Dom–Yug, 2018. – 204 s.
17. Latonov V.V., Gurevich G.R. Raschet koeffitsiyenta szhimayemosti prirodnogo gaza // Gazovaya prom-st’. – 1969. – № 2. – C. 7–9.
19. Al-Fatlawi O., Hossain M., Osborne J. Determination of best possible correlation for gas compressibility factor to accurately predict the initial gas reserves in gas-hydrocarbon reservoirs // International J. of Hydrogen Energy. – 2017. – Vol. 42, Issue 40. – P. 25492–25508.
20. Azizi N., Behbahani R.M. Predicting the compressibility factor of natural gas // Petroleum Science and Technology. – 2017. – Vol. 35, Issue 7. – P. 696–702.
21. Ekechukwu G.K., Orodu O.D. Novel mathematical correlation for accurate prediction of gas compressibility factor // Natural Gas Industry B. – 2019. – Vol. 6, Issue 6. – P. 629–638.
22. Hemmati-Sarapardeh A., Soltanian M.R. Modeling natural gas compressibility factor using a hybrid group method of data handling // Engineering Applications of Computational Fluid Mechanics. – 2020. – Vol 14, No 1. – P. 27–37.
23. GOST 30319.3-2015. Gaz prirodnyy. Metody rascheta fizicheskikh svoystv. Vychisleniye fizicheskikh svoystv na osnove dannykh o komponentnom sostave. – M.: Standartinform, 2016. – 38 s.