Scientific and technical journal

«Automation and Informatization of the fuel and energy complex»

ISSN 0132-2222

FACTORIZATION OF FLOW PROFILE DATA IN PRODUCTION AND INJECTION WELLS BASED ON THE BAYESIAN MODELING

UDC: 681.5:622.276
DOI: 10.33285/0132-2222-2021-7(576)-47-56

Authors:

SIDELNIKOV KONSTANTIN ANATOLIEVICH 1,
FAIZULLIN RINAT VASILOVICH 2

1 Izhevsk Petroleum Scientific Center, Izhevsk, Russian Federation
2 MIREA - Russian Technological University, Moscow, Russian Federation

Keywords: regularization, Bayes' theorem, statistical inference, well test, flow profile, productivity index, injectivity index

Annotation:

a:2:{s:4:"TEXT";s:1163:"Using the results of well tests, the problem of factorization of flow rate profiles data of production and injection wells completed in a two-layered reservoir is formulated. This problem is ill-posed, and the process of adding information in order to solve it is required (regularization). Several methods of deterministic regularization based on

Bibliography:

1. Martin O. Bayesian Analysis with Python: Introduction to Statistical Modeling and Probabilistic Programming Using PyMC3 and ArviZ. - 2nd Edition. - Birmingham-Mumbai: Packt, 2018. - 358 p.
2. Downey A.B. Think Bayes. - Sebastopol: O'Reilly Media, 2013. - 210 p.
3. Korde A.A. Probabilistic Decline Curve Analysis in Unconventional Reservoirs Using Bayesian and Approximate Bayesian Inference: Thesis (M.S.). - Fairbanks: University of Alaska, 2019. - 102 p.
4. Lun Li. Bayesian Statistical Inference Applied to Reservoir Modelling and Earthquake Scaling: Thesis (Ph.D.). - Edinburgh: University of Edinburgh, 2006. - 186 p.
5. Grid-based Inversion of Pressure Transient Test Data with Stochastic Gradient Techniques / R. Booth, K. Morton, M. Onur, F. Kuchuk // Int. J. for Uncertainty Quantification. - 2012. - Vol. 2, Issue 4. - P. 323-339. - DOI: 10.1615/Int.J.UncertaintyQuantification.2012003480
6. Bayesian Deconvolution of Oil Well Test Data Using Gaussian Processes / J.A. Christen, B. Sanso, M. Santana-Cibrian, J.X. Velasco-Hernandez // J. Applied Statistics. - 2016. - Vol. 43, Issue 4. - P. 721-737. - DOI: 10.1080/02664763.2015.1077374
7. Assisted History Matching Using Bayesian Inference: Application to Multiwell Simulation of a Huff-n-Puff Pilot Test in the Permian Basin / E. Eltahan, R. Ganjdanes, Yu Wey [et al.] // Proc. of the 8th Unconventional Resources Technology Conf., Austin, 20-22 July. - 2020. - P. 278-294. - DOI: 10.15530/urtec-2020-2787
8. Bayesian Reservoir Simulation / S. Darwis, N. Fitriyati, A.Y. Gunawan, R. Marwati // Int. Conf. on Statistics in Science, Business and Engineering (ICSSBE), Langkawi, Malaysia, 10-12 Sep. - IEEE, 2012. - DOI: 10.1109/ICSSBE.2012.6396519
9. Masoudi P., Asgarinezhad Y., Tokhmechi B. Feature Selection for Reservoir Characterisation by Bayesian Network // Arabian J. of Geosciences. - 2015. - Vol. 8, Issue 5. - P. 3031-3043. - DOI: 10.1007/s12517-014-1361-7
10. Dou Z. Bayesian Global Optimization Approach to the Oil Well Placement Problem with Quantified Uncertainties: Thesis (M.S.). - West Lafayette: Purdue University, 2015. - 70 p.
11. Anraku T. Discrimination Between Reservoir Models in Well Test Analysis: Thesis (Ph.D.). - Stanford: Stanford University. - 1993. - 266 p.
12. D'Windt A. Reservoir Zonation and Permeability Estimation: A Bayesian Approach // Proc. of 48th Annual Logging Symp., Austin, Texas. - Society of Petrophysicists and Well-Log Analysts, - 2007.
13. Loures L.L. Porosity Bayesian Inference from Multiple Well-Log Data // CREWES Research Report. - 2002. - Vol. 14. - URL: https://www.crewes.org/ForOurSponsors/ResearchReports/2002/2002-07.pdf
14. Лысенко В.Д. Разработка нефтяных месторождений. Теория и практика. - М.: Недра, 1996. - 367 с.
15. Ипатов А.И., Кременецкий М.И. Геофизический и гидродинамический контроль разработки месторождений углеводородов. - М.-Ижевск: Ин-т компьют. исслед., 2005. - 780 с.
16. Neumaier A. Solving Ill-conditioned and Singular Linear Systems: A Tutorial on Regularization // SIAM Review. - 1998. - Vol. 40, Issue 3. - P. 636-666. - DOI: 10.1137/S0036144597321909
17. Avriel M. Nonlinear Programming: Analysis and Methods. - Mineola: Dover Publishing, 2003. - 512 p.
18. LKJ Cholesky Covariance Priors for Multivariate Normal Models. - URL: https://docs.pymc.io/notebooks/LKJ.html