Scientific and technical journal

«Automation and Informatization of the fuel and energy complex»

ISSN 0132-2222

Automation and Informatization of the fuel and energy complex
Application of deep learning methods in actual tasks of core samples microcomputer tomography (micro-CT) processing. Solution of the inverse problem, interpolation of sparse sinograms, image slice filtration

UDC: 004.8
DOI: 10.33285/2782-604X-2023-10(603)-48-58

Authors:

ARSENIEV-OBRAZTSOV SERGEY S.1,
PLUSCH GRIGORIY O.1

1 National University of Oil and Gas "Gubkin University", Moscow, Russia

Keywords: micro-CT, deep learning, machine learning, computer vision, digital core, inverse Radon transformation, sinogram interpolation, filtering of slice images

Annotation:

Petro-physical parameters are critical for building oil and gas field models. The predicted indicators of oil production depend on the accuracy, amount, and representativeness of petro-physical parameters, used in the mathematical models of development processes. Non-destructive methods, such as microcomputer tomography (micro-CT), allow obtaining high-resolution 3D images of rocks, which, enables more accurate assessment of petro-physical parameters. Deep learning was successfully applied in various scientific fields, including processing of micro-CT core data. This area attracts the attention of researchers. The authors of the article overview the recent results of the deep learning methods application when processing micro-CT core sinograms and post-processing of the obtained slice images.

Bibliography:

1. Adler J., Oktem Ö. Learned Primal-Dual Reconstruction // IEEE Transactions on Medical Imaging. – 2018. – Vol. 37, Issue 6. – P. 1322–1332. – DOI: 10.1109/TMI.2018.2799231
2. Arsenyev-Obraztsov S.S., Volkov E.A., Plusch G.O. Proposals on 3D parallel edge-preserving filtration for x-ray tomographic digital images of porous medium core plugs // IOP Conf. Series: Materials Science and Engineering. – IOP Publishing, 2019. – Vol. 700. 2nd Conf. of Computational Methods in Offshore Technology and First Conf. of Oil and Gas Technology (COTech & OGTech 2019), Nov. 27–29, 2019, Stavanger, Norway. – DOI: 10.1088/1757-899X/700/1/012053
3. Arsenyev-Obraztsov S.S., Plusch G.O. Deep learning based restoration of lost sections in MicroCT core plugs // IOP Conf. Series: Materials Science and Engineering. – IOP Publishing, 2021. – Vol. 1201. Third Conf. of Computational Methods & Ocean Technology (COTech 2021), Stavanger, Norway and Second Conf. of Oil & Gas Technologies in Cold Climate (OGTech 2021), Nov. 25–26, 2021, Moscow, Russia. – DOI: 10.1088/1757-899X/1201/1/012070
4. Attention Is All You Need / A. Vaswani, N. Shazeer, N. Parmar [et al.] // Advances in Neural Information Processing Systems. – 2017. – Vol. 30. – DOI: 10.48550/arXiv.1706.03762
5. Chambolle A., Pock T. A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging // J. of Mathematical Imaging and Vision. – 2011. – Vol. 40, Issue 1. – P. 120–145. – DOI: 10.1007/s10851-010-0251-1
6. Coleman R. Calculus on Normed Vector Spaces. – New York: Springer Science & Business Media, 2012. – XI, 249 p.
7. Da Wang Y., Armstrong R.T., Mostaghimi P. Super Resolution Convolutional Neural Network Models for Enhancing Resolution of Rock Micro-CT Images. – 2019. – URL: http://arxiv.org/pdf/1904.07470v1
8. Deep Convolutional Neural Network for Inverse Problems in Imaging / Kyong Hwan Jin, M.T. McCann, E. Froustey, M. Unser // IEEE Transactions on Image Processing. – 2017. – Vol. 26, Issue 9. – P. 4509–4522. – DOI: 10.1109/TIP.2017.2713099
9. Deep Residual Learning for Image Recognition / Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun // Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, June 27–30, 2016, Las Vegas, NV, USA. – 2016. – P. 770–778. – DOI:10.1109/cvpr.2016.90
10. Dong X., Vekhande S., Cao G. Sinogram interpolation for sparse-view micro-CT with deep learning neural network // Medical Imaging 2019: Physics of Medical Imaging. – SPIE, 2019. – Vol. 10948. – P. 692–698. – URL: http://arxiv.org/pdf/1902.03362v1
11. Enhanced Deep Residual Networks for Single Image Super-Resolution / Bee Lim, Sanghyun Son, Heewon Kim [et al.]. – 2017. – DOI: 10.48550/ARXIV.1707.02921
12. Ji He, Yongbo Wang, Jianhua Ma. Radon Inversion via Deep Learning // IEEE Transactions on Medical Imaging. – 2020. – Vol. 39, Issue 6. – P. 2076–2087. – DOI: 10.1109/TMI.2020.2964266
13. Image reconstruction by domain-transform manifold learning / Bo Zhu, J.Z. Liu, S.F. Cauley [et al.] // Nature. – 2018. – Vol. 555, No. 7697. – P. 487–492. – DOI: 10.1038/nature25988
14. Low-Dose CT Image Denoising Using a Generative Adversarial Network with Wasserstein Distance and Perceptual Loss / Qingsong Yang, Pingkun Yan, Yanbo Zhang [et al.] // IEEE Transactions on Medical Imaging. – 2018. – Vol. 37, Issue 6. – P. 1348–1357. – DOI: 10.1109/TMI.2018.2827462
15. Low-Dose CT with a Residual Encoder-Decoder Convolutional Neural Network / Hu Chen, Yi Zhang, M.K. Kalra [et al.] // IEEE Transactions on Medical Imaging. – 2017. – Vol. 36, Issue 12. – P. 2524–2535. – DOI: 10.1109/TMI.2017.2715284
16. Image Super-Resolution on PIRM-test. – 2022. – URL: https://paperswithcode.com/sota/image-super-resolution-on-pirm-test (data obrashcheniya 12.12.2022).
17. Super-Resolution on IXI. – 2022. – URL: https://paperswithcode.com/sota/super-resolution-on-ixi (data obrashcheniya 12.12.2022).
18. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network / C. Ledig, L. Theis, F. Huszar [et al.]. – 2016. – DOI: 10.48550/ARXIV.1609.04802
19. Parikh N., Boyd S. Proximal Algorithms // Foundations and Trends® in Optimization. – 2014. – Vol. 1, No. 3. – P. 123–231. – DOI: 10.1561/2400000003
20. Ronneberger O., Fischer P., Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. – 2015. – DOI: 10.48550/ARXIV.1505.04597
21. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks / Jun-Yan Zhu, T. Park, P. Isola, A.A. Efros. – 2017. – DOI: 10.48550/ARXIV.1703.10593
22. Ying Da Wang, Mostaghimi P., Armstrong R. A Super Resolution Dataset of Digital Rocks (DRSRD1): Sandstone and Carbonate. – 2019. – DOI: 10.17612/P7D38H
23. Wide Activation for Efficient and Accurate Image Super-Resolution / Jiahui Yu, Yuchen Fan, Jianchao Yang [et al.]. – 2018. – DOI: 10.48550/ARXIV.1808.08718
24. Arsen'ev-Obraztsov S.S., Plyushch G.O. Primenenie modifitsirovannogo fil'tra anizotropnoy diffuzii dlya obrabotki rezul'tatov rentgenovskoy mikrokomp'yuternoy tomografii // Avtomatizatsiya, telemekhanizatsiya i svyaz' v neftyanoy promyshlennosti. – 2019. – № 1(546). – S. 30–40. – DOI: 10.33285/0132-2222-2019-1(546)-30-40