Scientific and technical journal

«Automation and Informatization of the fuel and energy complex»

ISSN 0132-2222

Automation and Informatization of the fuel and energy complex
Quasi-stationary hydraulic model of flows in oil and oil product pipelines

UDC: 621.644
DOI: 10.33285/2782-604X-2023-10(603)-59-69

Authors:

SUKHAREV MIKHAIL G.1,2,
YUZHANIN VIKTOR V.1

1 National University of Oil and Gas "Gubkin University", Moscow, Russia
2 Gazprom Promgaz, Vidnoye, Russia

Keywords: mathematical modeling, oil and oil product pipelines, hydraulic circuits, quasi-stationary modes, quick-operation management, product transfer by batches

Annotation:

In case of the operational control of oil and oil product pipelines, there arise various tasks – from the study of self-flowing modes to the development of protection measures from shock waves. The time scales in these problems can differ by orders of magnitude. Mathematical flow models largely depend on the time scale. As is known, the criteria of one-time scale cannot be applied when evaluating phenomena of another time scale. The article considers flows in oil and product pipelines that are typical for normal operational modes. These flows cannot be considered stationary. The density, viscosity, and component composition of the fluid change, however, the changes occur in the normal mode of operational control. The reasons for the changes can be flows maneuvering, drift of equipment state indicators, products properties behavior that are entering the system, incidents and repairs, volatility of external conditions (weather, consumer demand). A quasi-stationary model has been developed to simulate the transmission process under these circumstances. This model is designed to adequately describe the situation in the mode of the product transfer by batches, compounding, adding of anti-turbulent anti-corrosion additives. A special mathematical apparatus has been developed for studying quasi-stationary flows, which differs from traditional models of continuum mechanics. The algorithm implementing the method covers the case of pipeline networks of arbitrary configuration.

Bibliography:

1. Zhukovskiy N.E. O gidravlicheskom udare v vodoprovodnykh trubakh. – Izd. 3-e. – M.: URSS, 2011. – 104 s. – (Fiziko-matematicheskoe nasledie: fizika (mekhanika)).
2. Lur'e M.V. Teoreticheskie osnovy truboprovodnogo transporta nefti, nefteproduktov i gaza. – M.: Nedra, 2017. – 477 s.
3. Nechval' M.V., Novoselov V.F., Tugunov P.I. Posledovatel'naya perekachka neftey i nefteproduktov po magistral'nym truboprovodam. – M.: Nedra, 1976. – 223 s.
4. Optimizatsiya posledovatel'noy perekachki nefteproduktov / M.V. Lur'e, V.I. Maron, L.A. Matskin [i dr.]. – M.: Nedra, 1979. – 256 s.
5. Sukharev M.G., Yufin V.A. Opredelenie raschetnoy proizvoditel'nosti produktoprovoda pri posledovatel'noy perekachke benzina i dizel'nogo topliva // Transport i khranenie nefti i nefteproduktov. – 1974. – № 3. – S. 18–21.
6. Nicholas E. Simulation of Slack Line Flow. A Tutorial: PSIG 9505 // PSIG Annual Meeting, Oct. 18–20, 1995. – Pipeline Simulation Interest Group, 1995. – 18 p.
7. Manning W., Lind G. Data Analysis and Discussion of Product Interface Size on a Batched Crude Oil Pipeline: PSIG 1411 // PSIG Annual Meeting, May 6–9, Baltimore, Maryland, USA. – Pipeline Simulation Interest Group, 2014. – 9 p.
8. Milano G., Goyal N., Basnett D. Tracking Batches Accurately in a Multi-Product Pipeline with Large Elevation Changes and Prominent Slack Flow // 2018 12th Int. Pipeline Conf., Sept. 24–28, 2018, Calgary, Alberta, Canada. Vol. 3. Operations, Monitoring, and Maintenance; Materials and Joining. – 2018. – DOI: 10.1115/IPC2018-78715
9. Stanley G., Ford M.H. Throughput Maximization and Verification for Batched Liquid Pipelines: PSIG 1216. – PSIG Annual Meeting, May 15–18, 2012, New Mexico. – Pipeline Simulation Interest Group, 2012. – 16 p.
10. Garcia-Hernandez A. Modeling and Simulation Case Study of a Batching Operation of Crude Oils in a Pipeline System: PSIG 1111 // PSIG Annual Meeting, May 24–27, 2011, California. – Pipeline Simulation Interest Group, 2011. – 14 p.
11. Milano G. Evaluating Different Approaches for Tracking Batches in a Multi-Product Pipeline During the Presence of Slack: PSIG 1904 // PSIG Annual Meeting, May 14–17, 2019, London. – Pipeline Simulation Interest Group, 2019. – 9 p.
12. Matko D., Blažič S., Geiger G. Simulation of Multi-product Pipelines // Int. J. of Mathematical Models and Methods in Applied Sciences. – 2007. – Vol. 1, Issue 2. – P. 62–69.
13. Blažič S., Matko D., Geiger G. Simple Model of a Multi-Batch Driven Pipeline // Mathematics and Computers in Simulation. – 2004. – Vol. 64, Issue 6. – P. 617–630. – DOI: 10.1016/j.matcom.2003.11.013
14. Ellul I.R., Shippen M.E., Saether G. The Modeling of Multiphase Systems Under Steady-State and Transient Conditions. A Tutorial: PSIG 0403 // 36th Annual Meeting, Palm Springs, CA. – Pipeline Simulation Interest Group, 2004. – 21 p.
15. Merenkov A.P., Khasilev V.Ya. Teoriya gidravlicheskikh tsepey. – M.: Nauka, 1985. – 278 s.
16. Sukharev M.G., Samoylov R.V. Analiz i upravlenie statsionarnymi i nestatsionarnymi rezhimami transporta gaza. – M.: Izdat. tsentr RGU nefti i gaza (NIU) im. I.M. Gubkina, 2016. – 399 s.
17. Sukharev M.G., Yuzhanin V.V. Modelirovanie sistemy neftesnabzheniya kak problema teorii gidravlicheskikh tsepey // Avtomatizatsiya, telemekhanizatsiya i svyaz' v neftyanoy promyshlennosti. – 2021. – № 3(572). – S. 40–51. – DOI: 10.33285/0132-2222-2021-3(572)-40-51
18. Issledovanie metodov rascheta kinematicheskoy vyazkosti nefti v magistral'nom nefteprovode / O.V. Aralov, I.V. Buyanov, A.S. Savanin, E.I. Iordanskiy // Nauka i tekhnologii truboprovodnogo transporta nefti i nefteproduktov. – 2017. – T. 7, № 5. – S. 97–105.
19. Novitskiy N.N. Otsenka parametrov gidravlicheskikh tsepey / otv. red. d.t.n. E.V. Sennova. – Novosibirsk: Nauka, 1998. – 213 s.