Asymptotics of insurance risk for claims with "heavy tailed" distributions
UDC: 51-7(075.8)
DOI: 10.33285/2782-604X-2023-11(604)-35-40
Authors:
RUSEV VLADIMIR N.
1,
SKORIKOV ALEXANDER V.
1
1 National University of Oil and Gas "Gubkin University", Moscow, Russia
Keywords: classical risk model, risk function, probability of ruin, "heavy-tailed" distributions, Benktander distribution, Burr distribution, Gnedenko – Weibull distribution
Annotation:
A popular problem of the actuarial science, namely, probabilistic modeling of uncertainty in terms of the size of payments, when the latter can become big, is considered. It is known that the risk function (probability of ruin) is obtained as a solution of an integro-differential equation. Since the analytical solution of this equation is difficult, various approximations of the solution are sought. The article solved the problem of determining the asymptotic representation of the risk function in the case of "heavy tails" of well-known payout distributions. The asymptotic behavior of the risk function is found for pay-offs, modeled by Benktander distributions of types I, II, Gnedenko – Weibull and Burr type XII. A significant advantage of the derived approximations is the simplicity of the formulas of the resulting representations. The calculations were carried out under the assumption of a classical risk model for the above-mentioned "heavy tailed" distributions.
Bibliography:
1. Astapenko E. Strakhovanie neftegazovoy otrasli // Ekonomika i biznes: teoriya i praktika. – 2020. – № 12-3(70). – S. 6–12. – DOI: 10.24411/2411-0450-2020-11115
2. Cramer H. Collective Risk Theory: A Survey of the Theory from the Point of View of the Theory of Stochastic Process. – Stockholm: Nordiska bokhandeln, 1955. – 92 p.
3. Feller V. Vvedenie v teoriyu veroyatnostey i ee prilozheniya: v 2 t. T. 2. – M.: RUGRAM, 2021. – 766 s.
4. Kalashnikov V.V., Konstantinidis D.G. Veroyatnost' razoreniya // Fundam. i priklad. matematika. – 1996. – T. 2, Vyp. 4. – S. 1055–1100.
5. Embrechts P., Klüppelberg C., Micosch T. Modelling Extremal Events for Insurance and Finance. – Berlin: Springer-Verlag, 1997. – XV, 648 p. – DOI: 10.1007/978-3-642-33483-2
6. Mikosch T. Non-Life Insurance Mathematics: An Introduction with Stochastic Processes. – Berlin: Springer-Verlag, 2006. – 248 p.
7. Korolev V.Yu., Bening V.E., Shorgin S.Ya. Matematicheskie osnovy teorii riska. – M.: Fizmatlit, 2011. – 620 s.
8. Nath D.C., Das J. Modeling of Insurance Data through Two Heavy Tailed Distributions: Computations of Some of Their Actuarial Quantities through Simulation from Their Equilibrium Distributions and the Use of Their Convolutions // J. of Mathematical Finance. – 2016. – Vol. 6, No. 3. – P. 378–400. – DOI: 10.4236/jmf.2016.63031
9. Rumyantsev A.S., Morozov E.V. Raspredeleniya s "tyazhelymi khvostami" i ikh prilozheniya. – Petrozavodsk: Izd-vo PetrGU, 2013. – 67 s.
10. Embrechts P., Veraverbeke N. Estimates of the probability of ruin with special emphasis on the possibility of large claims // Insurance: Mathematics and Economics. – 1982. – Vol. 1, Issue 1. – P. 55–72. – DOI: 10.1016/0167-6687(82)90021-X
11. Benktander G. The calculation of a fluctuation loading for an excess of loss cover // ASTIN Bulletin: The J. of the IAA. – 1975. – Vol. 8, Issue 3. – P. 272–278. – DOI: 10.1017/S051503610001120X
12. Embrechts P., Benktander G. On Pareto Distributions and Rating: A Prize Award Competition // ASTIN Bulletin: The J. of the IAA. – 1999. – Vol. 29, Issue 1. – P. 1–3. – DOI: 10.1017/S0515036100003457
13. Chornyy R.O., Bilynskyi A.Ya., Kinas O.M. The probability of bankruptcy in the case of "heavy-tails" and the admissible insurance rate // Modern scientific researches. – 2018. – Vol. 1, Issue 3. – P. 74–81. – DOI: 10.30889/2523-4692.2018-03-01-049
14. Rusev V., Skorikov A. The Asymptotics of Moments for the Remaining Time of Heavy-Tail Distributions // Computer Science and Mathematics Forum. – 2023. – Vol. 7. – P. 52. – DOI: 10.3390/IOCMA2023-14435