Study of problems of multilevel probabilistic modeling of flow distribution in pipeline systems
UDC: [519.2+519.61]:658.26
DOI: 10.33285/2782-604X-2023-11(604)-51-58
Authors:
NOVITSKY NIKOLAY N.
1,
VANTEEVA OLGA V.
1
1 Melentiev Energy Systems Institute SB RAS, Irkutsk, Russia
Keywords: pipeline systems, flow distribution, probabilistic modeling, multilevel approach
Annotation:
The article is devoted to researching the problem of probabilistic modeling of flow distribution in large dimensional pipeline systems and complex structure. To achieve this goal, the article for the first time proposes the application of a multilevel approach. The main provisions of this approach are presented. The ways of decompositioning the computational scheme and models of the pipeline system are proposed. Against the background of a brief characteristic of previously developed general and topological methods for flow distribution probabilistic modeling, a scheme of organizing a multilevel calculations sequence based on the application of these methods for different levels calculation schemes and topology (looped, tree-like) is presented. Particular attention is paid to the issues of coordinating solutions at decomposition points of different-level calculation schemes. The article presents some numerical and analytical studies of the proposed approach using conventional schemes. The results of the studies proved that to calculate the mathematical expectations of all mode parameters, dispersions of nodal flow rates, branches flow rates and branches pressure losses, it is sufficient to use the methods previously developed by the authors of the article (common and topological). To calculate the nodal pressure dispersions, it is required to take into account the correlation of the pressure field of the design scheme upper and lower levels. The reasons and possible directions for this correlation accounting are considered.
Bibliography:
1. Kucheryavyi V.I., Mil’kov S.N. Statistical Modeling of the Remaining Life of a Section of a Main Gas Pipeline by Low-Cycle Loading // J. of Machinery Manufacture and Reliability. – 2008. – Vol. 37, Issue 3. – P. 305–310. – DOI: 10.3103/S1052618808030163
2. Feng Chen, Changchun Wu. A novel methodology for forecasting gas supply reliability of natural gas pipeline systems // Frontiers in Energy. – 2020. – Vol. 14, Issue 2. – P. 213–223. – DOI: 10.1007/s11708-020-0672-5
3. Pandey M.D. Probabilistic models for condition assessment of oil and gas pipelines // NDT&E International. – 1998. – Vol. 31, Issue 5. – P. 349–358. – DOI: 10.1016/S0963-8695(98)00003-6
4. Lei Wu, Shahidehpour M. Optimal coordination of stochastic hydro and natural gas supplies in midterm operation of power systems // IET Generation, Transmission & Distribution. – 2011. – Vol. 5, Issue 5. – P. 577–587. – DOI: 10.1049/iet-gtd.2010.0215
5. Hourly Electricity Demand Response in the Stochastic Day-Ahead Scheduling of Coordinated Electricity and Natural Gas Networks / Xiaping Zhang, M. Shahidehpour, A. Alabdulwahab, A. Abusorrah // IEEE Transactions on Power Systems. – 2016. – Vol. 31, Issue 1. – P. 592–601. – DOI: 10.1109/TPWRS.2015.2390632
6. Balaei-sani S., Jabari F., Mohammadi-Ivatloo B. Stochastic Analysis of Gas Electricity Hybrid Grid Using Nataf Transformation Combined with Point Estimation Method // Integration of Clean and Sustainable Energy Resources and Storage in Multi-Generation Systems. – Springer Nature Switzerland AG, 2020. – P. 259–281. – DOI: 10.1007/978-3-030-42420-6_13
7. Unified probabilistic gas and power flow / Yuan Hu, Haoran Lian, Zhaohong Bie, Baorong Zhou // J. of Modern Power Systems and Clean Energy. – 2017. – Vol. 5, Issue 3. – P. 400–411. – DOI: 10.1007/s40565-017-0284-1
8. Probabilistic Steady-State Operation and Interaction Analysis of Integrated Electricity, Gas and Heating Systems / Lun Yang, Xia Zhao, Xinyi Li, Wei Yan // Energies. – 2018. – Vol. 11, Issue 4. – P. 917. – DOI: 10.3390/en11040917
9. Segarra E.L., Ruiz G.R., Bandera C.F. Probabilistic Load Forecasting for Building Energy Models // Sensors. – 2020. – Vol. 20, Issue 22. – P. 6525. – DOI: 10.3390/s20226525
10. Ritchie M.J., Engelbrecht J.A.A., Booysen M.J. A probabilistic hot water usage model and simulator for use in residential energy management // Energy & Buildings. – 2021. – Vol. 235. – P. 110727. – DOI: 10.31224/osf.io/j8aq4
11. Pasha K.F.M., Lansey K. Strategies to Develop Warm Solutions for Real-Time Pump Scheduling for Water Distribution Systems // Water Resource Management. – 2014. – Vol. 28. – P. 3975–3987. – DOI: 10.1007/s11269-014-0721-0
12. A gradient descent direction based-cumulants method for probabilistic energy flow analysis of individual-based integrated energy systems / Jiehui Zheng, Wenting Xiao, C.Q. Wu [et al.] // Energy. – 2023. – Vol. 265. – P. 126290. – DOI: 10.1016/j.energy.2022.126290
13. Karambirov S.N. Matematicheskoe modelirovanie sistem podachi i raspredeleniya vody v usloviyakh mnogorezhimnosti i neopredelennosti. – M.: Mosk. gos. un-t prirodoobustroystva, 2004. – 197 s.
14. Gamm A.Z. Veroyatnostnye modeli rezhimov elektroenergeticheskikh sistem. – Novosibirsk: Nauka; Sib. izdat. firma, 1993. – 133 s.
15. Boloev E.V., Golub I.I. Ispol'zovanie metodov veroyatnostnogo potokoraspredeleniya dlya resheniya zadach v elektroenergetike // Vestn. SGTU. – 2012. – T. 1, № 2(64). – S. 110–119.
16. Novitskiy N.N., Vanteeva O.V. Modelirovanie stokhastiki potokoraspredeleniya v gidravlicheskikh tsepyakh // Izv. RAN. Energetika. – 2011. – № 2. – S. 122–131.
17. Novitsky N.N., Vanteyeva O.V. Stochastic modeling of hydraulic operating parameters in pipeline systems // Chaotic Modeling and Simulation (CMSIM). – 2014. – No. 1. – P. 95–108. – URL: http://www.cmsim.eu/papers_pdf/january_2014_papers/10_CMSIM_Journal_2014_Novitsky_Vanteyeva_1_95-108.pdf
18. Novitskiy N.N., Vanteeva O.V. Veroyatnostnoe modelirovanie gidravlicheskikh rezhimov truboprovodnykh setey drevovidnoy struktury topologicheskim metodom // Izv. RAN. Energetika. – 2017. – № 6. – S. 12–23.
19. Merenkov A.P., Khasilev V.Ya. Teoriya gidravlicheskikh tsepey / otv. red. M.G. Sukharev. – M.: Nauka, 1985. – 280 s.