Scientific and technical journal

«Automation and Informatization of the fuel and energy complex»

ISSN 0132-2222

Automation and Informatization of the fuel and energy complex
Water content monitoring system with simultaneous determination of fuel oil consumption at thermal power plants

UDC: 662.6:543.812+681.121.89.082.4
DOI: 10.33285/2782-604X-2023-2(595)-5-12

Authors:

MUZIPOV KHALIM N.1

1 Tyumen Industrial University, Tyumen, Russia

Keywords: heat, fuel oil, consumption, thermal power plant, ultrasound, tank, water content

Annotation:

The article describes a combined system for analyzing the quality and consumption of fuel oils, which are used for the production of electrical energy at thermal power plants (TPP). The described system consists of a capacitive system for assessing the water content in the fuel and an ultrasonic system for measuring fuel consumption. The combination of these two systems is used to assess the quality of the furnace fuel oil and the consumption in real time, which allows on-line monitoring the technological process of boilers operation without waiting for the results of laboratory analysis. In addition, the ultrasonic system allows control of fuel consumption and consequently its efficient use.

Bibliography:

1. An Ultrasonic-Capacitive System for Online Characterization of Fuel Oils in Thermal Power Plants / M.M. Campos, L.E. Borges-da-Silva, D. de Almeida Arantes [et al]. // Sensors. – 2021. – Vol. 21, Issue 23. – P. 7979. – DOI: 10.3390/s21237979
2. Bjørndal E. Acoustic Measurement of Liquid Density with Applications for Mass Measurement of Oil: PhD Thesis. – University of Bergen, 2007. – 144 p. – URL: https://bora.uib.no/bora-xmlui/bitstream/handle/1956/2518/Dr_Thesis_Erlend_Bjorndal.pdf?sequence=12&isAllowed=y
3. Bjorndal E., Froysa K.-E. Acoustic methods for obtaining the pressure reflection coefficient from a buffer rod based measurement cell // IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. – 2008. – Vol. 55, Issue 8. – P. 1781–1793. – DOI: 10.1109/TUFFC.2008.862
4. Hoche S., Hussein M.A., Becker T. Ultrasound-based density determination via buffer rod techniques: A review // J. of Sensors and Sensor Systems. – 2013. – Vol. 2, Issue 2. – P. 103–125. – DOI: 10.5194/jsss-2-103-2013
5. Kim J.O., Bau H.H. Instrument for simultaneous measurement of density and viscosity // Review of Scientific Instruments. – 1989. – Vol. 60, Issue 6. – P. 1111–1115. – DOI: 10.1063/1.1140325
6. Development of an ultrasonic technique to measure specfic gravity in lead-acid battery electrolyte / C.A. Swoboda, D.R. Fredrickson, S.D. Gabelnick [et al.] // IEEE Transactions on Sonics and Ultrasonics. – 1983. – Vol. 30, Issue 2. – P. 69–77. – DOI: 10.1109/T-SU.1983.31389
7. Davis L.A., Gordon R.B. Compression of mercury at high pressure // J. of Chemical Physics. – 1967. – Vol. 46, Issue 7. – P. 2650–2660. – DOI: 10.1063/1.1841095
8. Kang S.Q., You Y.P., Feng M.Y. Study of high-pressure physical properties of marine heavy oil // Key Engineering Materials. – 2016. – Vol. 693. – P. 411–418. – DOI: 10.4028/www.scientific.net/KEM.693.411
9. Elastic softening of bulk modulus of monoclinic HfO2 under high pressure / Y. Akahama, S. Kawaguchi, N. Hirao, Y. Ohishi // Applied Physics Letters. – 2020. – Vol. 117, Issue 18. – P. 182903. – DOI: 10.1063/5.0029148
10. McClements D.J., Fairley P. Ultrasonic pulse echo reflectometer // Ultrasonics. – 1991. – Vol. 29, Issue 1. – P. 58–62. – DOI: 10.1016/0041-624X(91)90174-7
11. Hale J.M. Ultrasonic density measurement for process control // Ultrasonics. – 1988. – Vol. 26, Issue 6. – P. 356–357. – DOI: 10.1016/0041-624X(88)90036-4
12. In-line concentration measurement in complex liquids using ultrasonic sensors / B. Henning, P.-C. Daur, S. Prange [et al.] // Ultrasonics. – 2000. – Vol. 38, Issue 1–8. – P. 799–803. – DOI: 10.1016/S0041-624X(99)00190-0
13. Campos M.M. Medidor de Vazao de Multi-Trajetorias: Master’s Thesis. – Itajuba, Brazil: Universidade Federal de Itajuba, 2017. – 189 p. – URL: https://repositorio.unifei.edu.br/xmlui/bitstream/handle/123456789/841/dissertacao_campos2_2017.pdf?sequence=1&isAllowed=y
14. Gruber P., Wermelinger F., Hug S. Experience with the ATT method for discharge measurement with adaptive weighting of the path velocities // Proc. of the HYDRO 2013 Conf., Innsbruck, Austria, Oct. 7–9, 2013. – URL: https://www.researchgate.net/publication/280835379_Experience_with_the_ATT_method_for_discharge_measurement_with_adaptive_weighting_of_the_path_velocities
15. Gruber P., Marushchenko S. Comparative study of 4(8)-path and 5(10)-path configurations for ATT flow measurements in circular conduits // Proc. of the IGHEM 2014 Conf., Itajuba, Brazil, Sept. 16–19, 2014. – URL: https://www.researchgate.net/publication/280832247_Comparative_study_of_48-path_and_510-path_configurations_for_ATT_flow_measurements_in_circular_conduits
16. Presentation of optimized integration methods and weighting corrections for the acoustic discharge measurement / T. Tresch, B. Lüscher, T. Staubli, P. Gruber // Proc. of the IGHEM 2008 Conf., Milano, Italy, Sept. 3–6, 2008. – URL: https://www.researchgate.net/publication/280878994_Presentation_of_optimized_integration_methods_and_weighting_corrections_for_the_acoustic_discharge_measurement
17. Hug S., Staubli T., Gruber P. Comparison of measured path velocities with numerical simulations for heavily disturbed velocity distributions // Proc. of the IGHEM 2012 Conf., Trondheim, Norway, June 27–30, 2012. – URL: https://www.researchgate.net/publication/280835498_Comparison_of_measured_path_velocities_with_numerical_simulations_for_heavily_disturbed_velocity_distributions