Scientific and technical journal

«Automation and Informatization of the fuel and energy complex»

ISSN 0132-2222

Automation and Informatization of the fuel and energy complex
A measuring system for researching the processes of flow mixing in the heat pipe of the combustion chamber of the gas turbine engine (GTE)

UDC: 681.5.08
DOI: 10.33285/2782-604X-2023-3(596)-5-11

Authors:

ALEKSANDROV YURI B.1,
SHABALIN ALEXEY S.2

1 Kazan National Research Technical University named after A.N. Tupolev - KAI, Kazan, Russia
2 VNIIR, Kazan, Russia

Keywords: thermistor, combustion chamber, gas turbine engine, mixing flows ratio, measurement system

Annotation:

The article considers the problem of developing a system for measuring temperature fields in an air flow. The system is characterized by all sensors high accuracy and low temperature noise. In a wide range of air temperatures, numerous sensors show the same values due to individual calibration of each of them and the creation of a computer code for signal processing and subsequent approximation of values, taking into account the individuality of the sensor. The measuring system contains no expensive and hard-to-find components, which makes it easy to create and allows expansion of the scope of its application in various fields of research.

Bibliography:

1. Effects of Swirling Strength of the Premixed Gas Flow on Pollutant Emission in a Heavy-Duty Gas Turbine / Huanhuan Gao, Zaiguo Fu, Zhuoxiong Zeng [et al.] // E3S Web of Conferences. – 2019. – Vol 118. 4th Int. Conf. on Advances in Energy and Environment Research (ICAEER 2019). – DOI: 10.1051/e3sconf/201911804038
2. Vishwanath R.B., Tilak P.M., Chaudhuri S. An experimental study of interacting swirl flows in a model gas turbine combustor // Experiments in Fluids. – 2018. – Vol. 59, Issue 3. – Article No. 38. – DOI: 10.1007/s00348-018-2495-2
3. Large Eddy Simulation Analysis on Confined Swirling Flows in a Gas Turbine Swirl Burner / Tao Liu, Fuqiang Bai, Zixuan Zhao [et al.] // Energies. – 2017. – Vol. 10, Issue 12. – DOI: 10.3390/en10122081
4. Chaouat B. The State of the Art of Hybrid RANS/LES Modeling for the Simulation of Turbulent Flows // Flow, Turbulence and Combustion. – 2017. – Vol. 99, Issue 2. – P. 279–327. – DOI: 10.1007/s10494-017-9828-8
5. Sistema upravleniya eksperimentom i obrabotki dannykh, poluchennykh metodami tsifrovoy trassernoy vizualizatsii (ActualFlow) / E.K. Akhmetbekov, A.V. Bil'skiy, Yu.A. Lozhkin [i dr.] // Vychislitel'nye metody i programmirovanie. – 2006. – T. 7, № 3. – S. 79–85.
6. Tokarev M.P., Markovich D.M., Bil'skiy A.V. Adaptivnye algoritmy obrabotki izobrazheniy chastits dlya rascheta mgnovennykh poley skorosti // Vychislitel'nye tekhnologii. – 2007. – T. 12, № 3. – S. 109–131.
7. Markovich D.M., Tokarev M.P. Algoritmy rekonstruktsii trekhkomponentnogo polya skorosti v metode Stereo PIV // Vychislitel'nye metody i programmirovanie. – 2008. – T. 9, № 3. – S. 311–326.
8. Zakharov D.L. Otrabotka metodiki izmereniya poley skorostey i kontsentratsiy s pomoshch'yu PIV v techeniyakh, kharakternykh dlya gazoturbinnykh ustanovok // Tr. MAI. – 2011. – № 45. – S. 28.
9. Aerodinamika zakruchennoy strui / R.B. Akhmedov, T.B. Balagula, F.K. Rashidov, A.Yu. Sakaev. – M.: Energiya, 1977. – 240 s.
10. Lefevr A. Protsessy v kamerakh sgoraniya GTD: per. s angl. – M.: Mir, 1986. – 566 s.
11. Gupta A.K., Lilley D.J., Syred N. Swirl Flows. – Tunbridge Wells, Kent, England: Abacus Press, 1984. – XIII, 475 p.
12. Mingazov B.G. Kamery sgoraniya gazoturbinnykh dvigateley. Konstruktsiya, modelirovanie protsessov i raschet: ucheb. posobie. – 2-e izd., ispr. – Kazan': Izd-vo Kazan. gos. tekhn. un-ta, 2006. – 220 s.
13. Kutateladze S.S., Volchkov E.P., Terekhov V.I. Aerodinamika i teplomassobmen v ogranichennykh vikhrevykh potokakh. – Novosibirsk: In-t teplofiziki SO AN SSSR, 1987. – 282 s.
14. Eksperimental'noe i chislennoe opredelenie koeffitsienta smesheniya za razlichnymi lopatochnymi zavikhritelyami kamery sgoraniya gazoturbinnogo dvigatelya / T.D. Nguen, Yu.B. Aleksandrov, A.I. Sulaiman, B.G. Mingazov // Izv. vuzov. Aviatsionnaya tekhnika. – 2020. – № 4. – S. 101–107.