Scientific and technical journal

«Automation and Informatization of the fuel and energy complex»

ISSN 0132-2222

Automation and Informatization of the fuel and energy complex
A method of dynamic models identification with variable transport delay

UDC: 681.5:622.279+622.276
DOI: 10.33285/2782-604X-2023-6(599)-22-29

Authors:

NURUTDINOV NARIMAN N.1,
GERSHKOVICH YULIA B.1

1 National University of Oil and Gas "Gubkin University", Moscow, Russia

Keywords: modeling, transport delay, advanced control, MPC-controller, optimization, identification

Annotation:

A method of a dynamic model identification with a variable transport delay for a multi-parameter controller of an advanced process control system (APCS) based on technological data obtained as a result of tests on a real technological object has been developed. A generalized description of the technological process of hydro-treatment of petroleum distillates, the structure of the existing control system based on the PID controller are given, and the problems of control at the reactor unit of the installation are formulated. The improved structure of an automatic control system using an MPC-controller using an identifiable model is composed. An identification method is described based on the optimization problem of minimizing the root mean square error of the model prediction. An algorithm for solving the problem using the scipy.optimize scientific library of the Python development environment is presented as well as the results of solving the identification problem on real technological data. The adequacy of the resulting dynamic model based on the methods of correlation analysis is proved.

Bibliography:

1. Nurutdinov N.N. Modelirovanie peremennogo transportnogo zapazdyvaniya na obosoblennykh tekhnologicheskikh uchastkakh ob"ektov neftepererabatyvayushchey promyshlennosti // Avtomatizatsiya i informatizatsiya TEK. – 2022. – № 12(593). – S. 44–47. – DOI: 10.33285/2782-604X-2022-12(593)-44-47
2. Usovershenstvovannoe upravlenie TP: ot kontura regulirovaniya do obshchezavodskoy optimizatsii / P.L. Logunov, M.V. Shamanin, D.V. Kneller [i dr.] // Avtomatizatsiya v prom-sti. – 2015. – № 4. – S. 4–14.
3. Ruscio D. Model predictive control and optimization. – Porsgrunn: Mars, 2001. – XIV, 193 p.
4. Camacho E.F., Bordons C. Model predictive control. – London: Springer, 1999. – XVII, 277 p.
5. Albertos P., Sala A. Multivariable control systems: an engineering approach. – London: Springer, 2004. – XVIII, 340 p.
6. Kim D.P. Teoriya avtomaticheskogo upravleniya: v 2 t. T. 2. Mnogomernye, nelineynye, optimal'nye i adaptivnye sistemy. – 2-e izd., ispr. i dop. – M.: FIZMATLIT, 2016. – 441 s.
7. Metody klassicheskoy i sovremennoy teorii avtomaticheskogo upravleniya: ucheb. v 5 t. T. 4. Teoriya optimizatsii sistem avtomaticheskogo upravleniya. – 2-e izd., pererab. i dop. / pod red. K.A. Pupkova, N.D. Egupova. – M.: Izd-vo MGTU im. N.E. Baumana, 2004. – 741 s.