Scientific and technical journal

«Automation and Informatization of the fuel and energy complex»

ISSN 0132-2222

Automation and Informatization of the fuel and energy complex
Modeling of a multi-sensor alarm system for pipelines telemetry

UDC: 004.94
DOI: 10.33285/2782-604X-2023-7(600)-43-50

Authors:

OLEYNIKOV DMITRY N.1,
FEDORENKO VLADIMIR V.1

1 North-Caucasus Federal University, Stavropol, Russia

Keywords: wireless sensor networks, mathematical model of end-to-end delay, information-telemetry systems

Annotation:

The promptness of message delivery in various pipeline monitoring systems of the oil and gas industry, in particular, alarm systems (AS) based on wireless sensor networks (WSN), is one of the key tasks on the solution of which the speed of response to emergency incidents and the safety of transportation of hydrocarbon raw materials generally depend. However, by now, there is no mathematical model that would characterize such a property of the WSN as efficiency and would take into account the parameters of data packets transmission: the state of the physical communication channel of the network section, the hardware features of the sensor nodes, the features of the data exchange protocol used with the appropriate technology for confirming the successful receipt of the data, the amount of cumulative time spent on transmission relayed over the WSN section data packet (end-to-end delay values). The article proposes a mathematical model for calculating inter-node distances with a minimum end-to-end delay of data transmission in a multi-sensor monitor system operating on the basis of a linear wireless sensor networks (LWSN) when using a handshake protocol with an automatic retransmission request (ARQ).

Bibliography:

1. Most fatal oil & gas pipeline accidents through history: A lessons learned approach / M.V. Biezma, M.A. Andrés, D. Agudo, E. Briz // Engineering Failure Analysis. – 2020. – Vol. 110. – P. 104446. – DOI: 10.1016/j.engfailanal.2020.104446
2. Akimova N.V. Distantsionnoe obnaruzhenie techey v truboprovodakh // Geo-Sibir'. – 2009. – T. 2. – S. 137–142.
3. Gubin S.G. Razvedyvatel'no-signalizatsionnyy kompleks "Radiobar'er" // Interekspo Geo-Sibir'. – 2016. – № 8. – S. 72–77.
4. Problemy obespecheniya bezopasnosti nefte- i produktoprovodov: interv'yu s Gen. direktorom OOO "POLYuS-ST" R.A. Kalimulinym // Tochka opory. – 2017. – № 7(228). – S. 7.
5. RD-13.310.00-KTN-221-12. Magistral'nye nefteprovody i nefteproduktoprovody. Kompleksy inzhenerno-tekhnicheskikh sredstv okhrany. Inzhenerno-tekhnicheskaya ukreplennost' i antiterroristicheskaya zashchita. – M.: Giprotruboprovod, 2016.
6. Criteria for the deployment of a heterogeneous linear WSN: Operability vs energy efficiency / V. Fedorenko, D. Oleinikov, I. Samoylenko, V. Samoylenko // Ad Hoc Networks. – 2023. – Vol. 147. – P. 103202. – DOI: 10.1016/j.adhoc.2023.103202
7. Energy-delay tradeoff in wireless multihop networks with unreliable links / Ruifeng Zhang, O. Berder, J.-M. Gorce, O. Sentieys // Ad Hoc Networks. – 2012. – Vol. 10, Issue 7. – P. 1306–1321. – DOI: 10.1016/j.adhoc.2012.03.012
8. DDC: Dynamic duty cycle for improving delay and energy efficiency in wireless sensor networks / Yuxin Liu, Anfeng Liu, Ning Zhang [et al.] // J. of Network and Computer Applications. – 2019. – Vol. 131. – P. 16–27. – DOI: 10.1016/j.jnca.2019.01.022
9. A Smart High-Speed Backbone Path Construction Approach for Energy and Delay Optimization in WSNs / Anfeng Liu, Mingfeng Huang, Ming Zhao, Tian Wang // IEEE Access. – 2018. – Vol. 6. – P. 13836–13854. – DOI: 10.1109/ACCESS.2018.2809556
10. Joint Optimization of Lifetime and Transport Delay under Reliability Constraint Wireless Sensor Networks / Mianxiong Dong, Kaoru Ota, Anfeng Liu, Minyi Guo // IEEE Transactions on Parallel and Distributed Systems. – 2015. – Vol. 27, Issue 1. – P. 225–236. – DOI: 10.1109/tpds.2015.2388482
11. Hans S., Nayyar A. A Review of De-facto MAC Standard: IEEE 802.11 DCF // 2014 Fourth Int. Conf. on Advanced Computing & Communication Technologies, Rohtak, India, Feb. 08–09, 2014. – IEEE, 2014. – DOI: 10.1109/ACCT.2014.19
12. IEEE Standard for Low-Rate Wireless Networks. Amendment 1: Enhanced Ultra Wideband (UWB) Physical Layers (PHYs) and Associated Ranging Techniques. – IEEE, 2020. – DOI: 10.1109/IEEESTD.2020.9179124
13. Meghji M., Habibi D. Investigating transmission power control for wireless sensor networks based on 802.15.4 specifications // Telecommunication Systems. – 2014. – Vol. 56, Issue 2. – P. 299–310. – DOI: 10.1007/s11235-013-9837-4