Scientific and technical journal

«Automation and Informatization of the fuel and energy complex»

ISSN 0132-2222

Automation and Informatization of the fuel and energy complex
An approach to designing district cooling pipeline systems applying the chiller-fancoil technology in an extremely continental climate with a permafrost zone

UDC: 338.(4/9):621.311.22.(571.36)
DOI: 10.33285/2782-604X-2023-8(601)-48-56

Authors:

VASILIEV SEMEN S.1,
BARAKHTENKO EVGENY A.2,
PAVLOV NIKITA V.1,
SOKOLOV DMITRY V.2

1 Larionov Institute of Physical-Technical Problems of the North SB RAS, Yakutsk, Russia
2 Melentiev Energy Systems Institute SB RAS, Irkutsk, Russia

Keywords: integrated energy systems, district cooling, absorption chiller, fancoil, pipeline systems design, hydraulic calculations, permafrost soils, geocryological processes

Annotation:

An approach to designing pipeline networks of integrated heat and cold supply systems based on absorption chillers has been developed. The approach includes the following: simulation of cooling demand; hydraulic calculations of district cooling (DC) pipeline systems; technical and economic calculations for choosing the optimal layout of pipeline systems; compatibility assessment of repair, commissioning works for heating and cooling systems; thermal interaction modeling of a permafrost massif with a pipeline cooling system. It is planned to use the "SOSNA" software package to determine optimal parameters of DC hydraulic systems. The developed approach was tested in the city block of Yakutsk. The optimal layout of the DC system was determined – the inner diameter of the main pipeline is 268,6 mm, the laying of pipelines is underground with direct connection of consumers, the pipeline material is high-density polyethylene. The simulation results of underground pipelines heating processes revealed an insignificant impact of engineering structures on the reliability and bearing capacity of permafrost soils. According to initial estimate, such systems cost of cooling can be 1,9 rubles/kWh, discounted payback period can be 17 years.

Bibliography:

1. Voropai N.I., Stennikov V.A., Barakhtenko E.A. Integrated Energy Systems: Challenges, Trends, Philosophy // Studies on Russian Economic Development. – 2017. – Vol. 28, Issue 5. – P. 492–499. – DOI: 10.1134/S107570071705015X
2. Vasilev S. Analysis of perspective technical solutions for the implementation of integrated heat and cooling systems in a harsh continental climate // E3S Web Conf. – 2020. – Vol. 209. ENERGY-21 – Sustainable Development & Smart Management. – P. 06023. – DOI: 10.1051/e3sconf/202020906023
3. Trygg L., Amiri Sh. European perspective on absorption cooling in a combined heat and power system – A case study of energy utility and industries in Sweden // Applied Energy. – 2007. – Vol. 84, Issue 12. – P. 1319–1337. – DOI: 10.1016/j.apenergy.2006.09.016
4. Vasilev S. Simulation modeling of integrated heat and cooling supply systems in the Far North to assess efficiency // E3S Web Conf. – 2021. – Vol. 289. Int. Conf. of Young Scientists "Energy Systems Research 2021". – DOI: 10.1051/e3sconf/202128904004
5. Barakhtenko E.A., Voropay N.I., Sokolov D.V. Sovremennoe sostoyanie issledovaniy v oblasti upravleniya integrirovannymi energeticheskimi sistemami // Izv. RAN. Energetika. – 2021. – № 4. – S. 4–23. – DOI: 10.31857/S0002331021040026
6. Augusto G.L., Culaba A.B., Maglaya A.B. Identification of design criteria for district cooling distribution network with ice thermal energy storage system // Energy Procedia. – 2015. – Vol. 79. – P. 233–238. – DOI: 10.1016/j.egypro.2015.11.470
7. Hafsi Z. Accurate explicit analytical solution for Colebrook-White equation // Mechanics Research Communications. – 2021. – Vol. 111. – P. 103646. – DOI: 10.1016/j.mechrescom.2020.103646
8. Taylor S.T., McGuire M. Sizing Pipe Using Life-Cycle Costs // ASHRAE J. – 2008. – Vol. 50, Issue 10. – P. 24–32.
9. Chan A.L.S., Hanby V.I., Chow T.T. Optimization of distribution piping network in district cooling system using genetic algorithm with local search // Energy Conversion and Management. – 2007. – Vol. 48, Issue 10. – P. 2622–2629. – DOI: 10.1016/j.enconman.2007.05.008
10. Merenkov A.P., Khasilev V.Ya. Teoriya gidravlicheskikh tsepey. – M.: Nauka, 1985. – 278 s.
11. Vodyanye teplovye seti: sprav. posobie po proektirovaniyu / I.V. Belyaykina, V.P. Vital'ev, N.K. Gromov [i dr.]; pod red. N.K. Gromova, E.P. Shubina. – M.: Energoatomizdat, 1988. – 376 s.
12. Sokolov E.Ya. Teplofikatsiya i teplovye seti: ucheb. dlya vuzov. – Izd. 4-e, pererab. – M.: Energiya, 1975. – 376 s.
13. Weather Data. – URL: https://energyplus.net/weather
14. Sistemy konditsionirovaniya vozdukha na baze chillera-fankoylov: ucheb. posobie / sost. E.U. Yamleeva. – Ul'yanovsk: UlGTU, 2019. – 242 s.
15. Samarskiy A.A., Vabishchevich P.N. Vychislitel'naya teploperedacha. – M.: Editorial URSS, 2003. – 784 s.
16. Modelirovanie teplovogo vzaimodeystviya sistemy truboprovodov tsentral'nogo khladosnabzheniya s merzlym gruntom / A.V. Malyshev, S.S. Vasil'ev, P.P. Permyakov, K.N. Bol'shev // Uspekhi sovremennogo estestvoznaniya. – 2022. – № 12. – S. 169–174. – DOI: 10.17513/use.37966