Scientific and technical journal

«Automation and Informatization of the fuel and energy complex»

ISSN 0132-2222

Automation and Informatization of the fuel and energy complex
The choice of the heat source type when solving problems of developing district heat supply systems

UDC: 658.264.003.13
DOI: 10.33285/2782-604X-2023-8(601)-57-65

Authors:

EDELEVA OLGA A.1,
MIKHEEV ALEXEY V.1,
STENNIKOV VALERY A.1

1 Melentiev Energy Systems Institute SB RAS, Irkutsk, Russia

Keywords: super-structure, structure, non-structural approach, heat supplying system, evolutionary algorithm, heat energy source, scheme of heat supply, set of equipment

Annotation:

The article proposes one of the ways to create a model for choosing efficient structures of heat sources for the problem of the long-term development of district heating systems. The solution of the problem is proposed to be divided into two stages. At the first stage, a multitude of heat source structures are formed according to their type, at the second stage, the optimal composition of heat source equipment is selected and the costs on the construction of such heat sources, the heating network and the payment for pollutants emissions are calculated. Iterative linking of these two stages provides a consistent solution of the problems of determining the structure of heat sources and its parameters, which will streamline conducting computational studies. At the stage of synthesis for generating the structures of heat sources, the use of graph grammars is proposed and the simplest example of their application is given. At the optimization stage, a model developed by the authors of the article for determining the optimal structures of heat sources is used, which selects the effective composition of heat sources equipment and also calculates the costs of their construction and operation.

Bibliography:

1. Superstructure-free synthesis and optimization of distributed industrial energy supply systems / P. Voll, M. Lampe, G. Wrobel, A. Bardow // Energy. – 2012. – Vol. 45, Issue 1. – P. 424–435. – DOI: 10.1016/j.energy.2012.01.041
2. Super-structure and super-structure free design search space representations for a building spatial design in multi-disciplinary building optimization / S. Boonstra, K. van der Blom, H. Hofmeyer [et al.] // 23rd Int. Workshop of the European Group for Intelligent Computing in Engineering, Kraków, Poland, June 29 – July 1, 2016. – Jagiellonian University ZPGK, 2016. – P. 1–10.
3. Sennova E.V., Sidler V.G. Matematicheskoe modelirovanie i optimizatsiya razvivayushchikhsya teplosnabzhayushchikh sistem. – Novosibirsk: Nauka, 1987. – 221 s.
4. Sennova E.V., Stennikov N.V. Tekhnicheskie i metodicheskie voprosy organizatsii sovmestnoy raboty istochnikov na obshchie teplovye seti // Matematicheskie modeli i metody analiza i optimal'nogo sinteza razvivayushchikhsya truboprovodnykh i gidravlicheskikh sistem. – SPb.: Lenekspo, 2006. – S. 45–47.
5. Mitra S., Sun L., Grossmann I.E. Optimal scheduling of industrial combined heat and power plants under time-sensitive electricity prices // Energy. – 2013. – Vol. 54. – P. 194–211. – DOI: 10.1016/j.energy.2013.02.030
6. Graph-theoretic approach to process synthesis: Polynomial algorithm for maximal structure generation / F. Friedler, K. Tarjan, Y. Huang, L. Fan // Computers & Chemical Engineering. – 1993. – Vol. 17, Issue 9. – P. 929–942. – DOI: 10.1016/0098-1354(93)80074-w
7. Friedler F., Varga J.B., Fan L.T. Decision-mapping: a tool for consistent and complete decisions in process synthesis // Chemical Engineering Science. – 1995. – Vol. 50, Issue 11. – P. 1755–1768. – DOI: 10.1016/0009-2509(95)00034-3
8. Combinatorially accelerated branch-and-bound method for solving the MIP model of process network synthesis / F. Friedler, J.B. Varga, E. Fehér, L.T. Fan // Nonconvex Optimization and Its Applications. – 1996. – Vol. 7. State of the Art in Global Optimization. – P. 609–626. – DOI: 10.1007/978-1-4613-3437-8_35
9. Algorithms. MSG Algorithm, SSG Algorithm, ABB Algorithm. – URL: https://p-graph.org/algorithms/ (data obrashcheniya 20.03.2023).
10. Superstructure-free synthesis and optimization of thermal power plants / Ligang Wang, P. Voll, M. Lampe [et al.] // Energy. – 2015. – Vol. 91. – P. 700–711. – DOI: 10.1016/j.energy.2015.08.068
11. Multi-objective superstructure-free synthesis and optimization of thermal power plants / Ligang Wang, M. Lampe, P. Voll [et al.] // Energy. – 2016. – Vol. 116, Part 1. – P. 1104–1116. – DOI: 10.1016/j.energy.2016.10.007
12. Toffolo A. A synthesis/design optimization algorithm for Rankine cycle based energy systems // Energy. – 2014. – Vol. 66. – P. 115–127. – DOI: 10.1016/j.energy.2014.01.070
13. Lazzaretto A., Manente G., Toffolo A. SYNTHSEP: A general methodology for the synthesis of energy system configurations beyond superstructures // Energy. – 2018. – Vol. 147. – P. 924–949. – DOI: 10.1016/j.energy.2018.01.075
14. Neveux T. Ab-initio process synthesis using evolutionary programming // Chemical Engineering Science. – 2018. – Vol. 185. – P. 209–221. – DOI: 10.1016/j.ces.2018.04.015
15. Tong Zhang, Sahinidis N.V., Siirola J.J. Pattern recognition in chemical process flowsheets // AlChE J. – 2019. – Vol. 65, Issue 2. – P. 592–603. – DOI: 10.1002/aic.16443
16. A review on superstructure optimization approaches in process system engineering / L. Mencarelli, Qi Chen, A. Pagot, I.E. Grossmann // Computers & Chemical Engineering. – 2020. – Vol. 136. – P. 106808. – DOI: 10.1016/j.compchemeng.2020.106808
17. Metodicheskiy podkhod k kompleksnoy optimizatsii struktury istochnikov tepla v zadachakh razvitiya teplosnabzhayushchikh sistem / V.A. Stennikov, O.A. Edeleva, E.A. Barakhtenko, D.V. Sokolov // Teploenergetika. – 2020. – № 12. – S. 88–100. – DOI: 10.1134/S0040363620120085
18. Metody postroeniya izbytochnykh skhem i programmnoe obespechenie dlya optimizatsii struktury istochnikov teplovoy energii / V.A. Stennikov, O.A. Edeleva, E.A. Barakhtenko [i dr.] // Matematicheskie modeli i metody analiza i optimal'nogo sinteza razvivayushchikhsya truboprovodnykh i gidravlicheskikh sistem: sb. tr. konf., Irkutsk, 26 iyunya – 02 iyulya 2018 g. – Irkutsk: ISEM SO RAN, 2018. – S. 188–199.
19. Stennikov V.A., Edeleva O.A. Methodical Approach for Structure Optimization of Energy Sources in the Development of heat Supply Systems // Advances in Intelligent Systems Research. – Atlantis Press, 2018. – Vol. 158. Critical infrastructures: Contingency management, Intelligent, Agent-based, Cloud computing and Cyber security (IWCI 2018): Proc. of the V Int. workshop. – P. 170–176. – DOI: 10.2991/iwci-18.2018.30
20. Edeleva O., Stennikov V. Optimization of energy sources structure to minimize environment pollution // E3S Web of Conf. – Atlantis Press, 2018. – Vol. 69. Int. Conf. Green Energy and Smart Grids (GESG 2018). – P. 02007. – DOI: 10.1051/e3sconf/20186902007
21. Voll P. Automated optimization based synthesis of distributed energy supply systems: PhD Thesis. – Aachen: Technical University, 2013. – XXII, 185 p.
22. Mitsel' A.A. Evristicheskie metody optimizatsii: ucheb. posobie. – Tomsk: Tomskiy gos. un-t sistem upravleniya i radioelektroniki, 2022. – 73 s.
23. Chomsky N. Syntactic Structures. – The Hague: Mouton & Co, 1957. – 117 p.
24. Nagl M. A Tutorial and Bibliographical Survey on Graph Grammars // Lecture Notes in Computer Science. – Berlin: Springer-Verlag, 1979. – Vol. 73. Graph-Grammars and Their Application to Computer Science and Biology. – P. 70–125. – DOI: 10.1007/BFb0025715