Scientific and technical journal

«Automation and Informatization of the fuel and energy complex»

ISSN 0132-2222

Automation and Informatization of the fuel and energy complex
The tasks for monitoring heat networks operational states: formalization and study

UDC: [62-932.2+51-74]:621.6
DOI: 10.33285/2782-604X-2023-8(601)-66-73

Authors:

GREBNEVA OKSANA A.1,
NOVITSKY NIKOLAY N.1

1 Melentiev Energy Systems Institute SB RAS, Irkutsk, Russia

Keywords: pipeline systems, monitoring, mode parameters, mathematical modeling, dynamic states, temperature regime

Annotation:

The authors of the article, on the background of the analysis and structuring of the problem and processes of monitoring the technical state of heating networks, made an attempt to formalize the task of their operational states monitoring. The peculiarities of this problem, its substantive formulation and possible approaches to its solution are considered. The literature analysis in the field of modeling dynamic processes of heat and mass transfer in cylindrical pipelines resulted in obtaining an analytical solution of the energy conservation equation for determining the temperature of the heat carrier at any point along the length of the pipeline at any moment of time. The proposed equation can potentially be taken as a basis of a dynamic model of the temperature state of a heating network when monitoring it. The mathematical formalization of the considered problem on the basis of the proposed approach of temperature modes dynamic identification is given.

Bibliography:

1. Merenkov A.P., Khasilev V.Ya. Teoriya gidravlicheskikh tsepey. – M.: Nauka, 1985. – 279 s.
2. Novitskiy N.N. Otsenivanie parametrov gidravlicheskikh tsepey. – Novosibirsk: Nauka, 1998. – 214 s.
3. Pravila organizatsii teplosnabzheniya v Rossiyskoy Federatsii: utv. Postanovleniem Pravitel'stva RF ot 08.08.2012 № 808 (red. ot 14.02.2020) "Ob organizatsii teplosnabzheniya v Rossiyskoy Federatsii i o vnesenii izmeneniy v nekotorye akty Pravitel'stva Rossiyskoy Federatsii". – Pp. 124.16–124.22. Otsenka nadlezhashchego tekhnicheskogo sostoyaniya teplovykh setey potrebitelya, raspolozhennykh mezhdu tochkoy postavki i tochkoy ucheta teplovoy energii (moshchnosti).
4. Metodicheskie rekomendatsii po opredeleniyu tekhnicheskogo sostoyaniya sistem teplosnabzheniya, goryachego vodosnabzheniya, kholodnogo vodosnabzheniya i vodootvedeniya // Normativnye dokumenty v sfere deyatel'nosti Feder. sluzhby po ekolog., tekhnolog. i atomnomu nadzoru. – M.: NTTs PB, 2013. – Ser. 20, Vyp. 13. – 92 s.
5. Grebneva O.A., Novitsky N.N. Modern Experience in Dynamic States Simulation of Pipeline Systems and the Possibility of its Application to Solving Identification Problems // E3S Web of Conf. – 2020. – Vol. 219. Mathematical models and methods of the analysis and optimal synthesis of the developing pipeline and hydraulic systems – 2020, Online, Oct. 16–22, 2020. – DOI: 10.1051/e3sconf/202021903001
6. Zhukovskiy E.N. O gidravlicheskom udare v vodoprovodnykh trubakh. – M.-L.: Gos. izd-vo tekhn.-teoret. lit., 1949. – 104 s.
7. Charnyy I.A. Neustanovivsheesya dvizhenie real'noy zhidkosti v trubakh. – M.-L.: Gos. izd-vo tekhn.-teoret. lit., 1951. – 224 s.
8. Metody rascheta nestatsionarnykh gidravlicheskikh rezhimov v vodyanykh teplovykh setyakh / B.N. Gromov, L.P. Kanina, K. Nestke, P. Shnaydenbakh // Teploenergetika. – 1981. – № 7. – S. 36–40.
9. Atavin A.A., Tarasevich V.V. Matematicheskoe modelirovanie nestatsionarnykh protsessov v truboprovodnykh sistemakh // Gidravlicheskie tsepi. Razvitie teorii i prilozheniya / pod red. A.Z. Gamma. – Novosibirsk: Nauka, 2000. – S. 16–30.
10. Modeling of hydraulic transient control with vented hydropneumatic tank / Ronghe Wang, Zhixun Wang, T.M. Walski [et al.] // Proc. 11th Int. Conf. on Computing and Control for Water Industry. – 2011. – P. 877–882.
11. Gabrielaitiene I., Bøhm B., Sunden B. Modelling temperature dynamics of a district heating system in Naestved, Denmark – A case study // Energy Conversion and Management. – 2007. – Vol. 48, Issue 1. – P. 78–86. – DOI: 10.1016/j.enconman.2006.05.011
12. Function method for dynamic temperature simulation of district heating network / Jinfu Zheng, Zhigang Zhou, Jianing Zhao, Jinda Wang // Applied Thermal Engineering. – 2017. – Vol. 123. – P. 682–688. – DOI: 10.1016/j.applthermaleng.2017.05.083
13. Chertkov M., Novitsky N.N. Thermal Transients in District Heating Systems // Energy. – 2019. – Vol. 184. – P. 22–33. – DOI: 10.1016/j.energy.2018.01.049
14. Grebneva O.A., Novitskiy N.N. Optimal'noe planirovanie i obrabotka rezul'tatov ispytaniy teplovykh setey na gidravlicheskie i teplovye poteri // Teploenergetika. – 2014. – № 10. – S. 62–67.
15. Novitskiy N.N. Elementy teorii i metodov setevoy identifikatsii truboprovodnykh sistem // Izv. RAN. Energetika. – 2000. – № 6. – S. 87–97.
16. Neizotermicheskoe techenie gaza v trubakh / O.F. Vasil'ev, E.A. Bondarev, A.F. Voevodin, M.A. Kanibolotskiy. – Novosibirsk: Nauka, 1978. – 126 s.
17. Panferov V.I. Modelirovanie nestatsionarnogo raspredeleniya temperatury teplonositelya po dline teploprovoda // Nauch.-tekhn. problemy sistem teplogazosnabzheniya, ventilyatsii, vodosnabzheniya i vodootvedeniya: mezhvuz. sb. nauch. tr. – Voronezh: VGASU, 2002. – S. 96–99.
18. Panferov V.I. Identifikatsiya teplovykh rezhimov truboprovodnykh sistem // Vestn. YuUrGU. Ser.: Str-vo i arkhitektura. – 2005. – № 13(53). – S. 85–90.
19. Bogoslovskiy P.A. Ledovyy rezhim truboprovodov gidroelektricheskikh stantsiy. – M.-L.: Gosenergoizdat, 1950. – 156 s.
20. Devyatov B.N., Demidenko N.D. Teoriya i metody analiza upravlyaemykh raspredelennykh protsessov. – Novosibirsk: Nauka, 1983. – 272 s.