Top.Mail.Ru

Scientific and technical journal

«Automation and Informatization of the fuel and energy complex»

ISSN 0132-2222

Optimal design of NGL fractionation process

UDC: 66.048.3-986
DOI: -

Authors:

NALETOV VLADISLAV A.1,
GLEBOV MIKHAIL B.1,
NALETOV ALEXEY YU.1

1 Mendeleev Russian Chemical-Technology University, Moscow, Russia

Keywords: NGL fractionation plant, distillation column, simulation, optimization, exergy efficiency, temperature, column feed stream, reflux rate, topology

Annotation:

An optimal design solution for organizing NGL fractionation process has been developed using mathematical simulations and thermodynamics. A gas fractionation plant with three distillation columns for saturated hydrocarbons (alkane) production was chosen as an object of the study. Simulation of gas fractionation plant in ChemCad was used to determine process operating parameters. The software was also used to determine the number of theoretical trays. The use of exergy efficiency has been proven a favorable criterion for optimal process organization. It was also shown that this method yields similar results to those ones derived from a system approach to optimal process organization based on information theory. The process design of the NGL fractionation plant included constraints for fixed product yield and product quality. Distillation column feed stream temperatures were optimized. Optimization criteria were evaluated for columns operation at reduced column reflux rates, calculated separately. Distillation column optimization results were used to design a new scheme for the gas fractionation process that does not require additional external energy sources. The obtained technical solution improves exergy process efficiency from 50 to 55 %.

Bibliography:

1. Analiz rynka shirokoy fraktsii legkikh uglevodorodov v Rossii v 2016–2020 godakh i prognoz na 2021–2025 gody. – URL: https://businesstat.ru/images/demo/ngl_russia_demo_businesstat.pdf
2. Amiyan V.A., Vasil'eva N.P. Dobycha gaza. – M.: Nedra, 1974. – 312 s.
3. Churakaev A.M. Gazopererabatyvayushchie zavody. Tekhnologicheskie protsessy i ustanovki. – M.: Khimiya, 1971. – 240 s.
4. Gazofraktsionirovanie / L.I. Mullakhmetova, E.I. Cherkasova, R.I. Sibgatullina [i dr.] // Vestn. tekhnolog. un-ta. – 2016. – T. 19, № 24. – S. 49–55.
5. Mullakhmetova L.I., Cherkasova E.I. Poputnyy neftyanoy gaz: podgotovka, transportirovka i pererabotka // Vestn. tekhnolog. un-ta. – 2015. – T. 18, № 19. – S. 83–90.
6. Kosareva M.A., Stakheev S.G., Tret'yakova N.A. Osnovnye tekhnologii pererabotki neftegazovogo syr'ya: ucheb. posobie. – Ekaterinburg, Izd-vo Ural. un-ta, 2022. – 110 s.
7. ITS 48–2017. Informatsionno-tekhnicheskiy spravochnik po nailuchshim dostupnym tekhnologiyam / Federal'noe agentstvo po tekhnicheskomu regulirovaniyu i metrologii. – M.: Byuro NTD, 2017. – VI, 165 s.
8. Laptev A.G., Basharov M.M., Afanas'ev E.P. Povyshenie effektivnosti protsessov i snizhenie energozatrat v neftegazokhimicheskom komplekse // Tr. Akademenergo. – 2017. – № 2. – S. 48–60.
9. Timoshenko A.V., Anokhina E.A. Modelirovanie i optimizatsiya kak instrument razrabotki vysokoeffektivnykh tekhnologicheskikh skhem rektifikatsii // Rossiyskiy tekhnolog. zhurn. – 2017. – № 3(17). – S. 138–150.
10. Yurchenko N.V., Smolikov M.D. Povyshenie energoeffektivnosti gazofraktsioniruyushchikh ustanovok (GFU) // Tekhnika i tekhnologiya neftegazovogo proizvodstva: materialy 7-y mezhdunar. nauch.-tekhn. konf., Omsk, 24–28 apr. 2017 g. – Omsk: OmGTU, 2017. – S. 19–20.
11. Valiullin I.I. Povyshenie effektivnosti kolonnogo oborudovaniya // Vestn. nauki i obrazovaniya. – 2017. – № 11(35). – S. 19–29.
12. Babidorich M.I., Pen'kova P.S., Reutova O.A. Optimal'naya organizatsiya teploobmennogo rezhima v protsessakh gazofraktsionirovaniya // Prikladnaya matematika i fundamental'naya informatika. – 2019. – T. 6, № 4. – S. 39–45. – DOI: 10.25206/2311-4908-2019-6-4-39-45
13. Sycheva O.I., Pisarenko Yu.A. Kriterii otsenki termodinamicheskoy effektivnosti protsessa rektifikatsii // Teoret. osnovy khim. tekhnologii. – 2019. – T. 53, № 3. – S. 309–314. – DOI: 10.1134/S0040357119020167
14. Naletov V.A., Glebov M.B., Potemkina T.A. Informatsionnye tekhnologii v zadachakh povysheniya rentabel'nosti protsessa transportirovki prirodnogo gaza // Avtomatizatsiya i informatizatsiya TEK. – 2022. – № 3(584). – S. 12–17. – DOI: 10.33285/2782-604X-2022-3(584)-12-17
15. Naletov V.A., Kolesnikov V.A., Glebov M.B. Termodinamicheskie osnovy sistemnogo informatsionnogo podkhoda k organizatsii slozhnykh tekhnologicheskikh ob"ektov // Teoret. osnovy khim. tekhnologii. – 2020. – T. 54, № 3. – S. 335–344. – DOI: 10.31857/S0040357120020128
16. Informatsionno-veroyatnostnyy podkhod k optimal'noy organizatsii protsessa binarnoy rektifikatsii / V.A. Naletov, V.A. Kolesnikov, M.B. Glebov, A.Yu. Naletov // Teoret. osnovy khim. tekhnologii. – 2019. – T. 53, № 3. – S. 315–323. – DOI: 10.1134/S004035711902012X
17. Osnovnye protsessy i apparaty khimicheskoy tekhnologii: posobie po proektirovaniyu / Yu.I. Dytnerskiy, G.S. Borisov, V.P. Brykov [i dr.]. – 2-e izd., pererab. i dopoln. – M.: Khimiya, 1991. – 496 s.