Intelligent decision-making support system architecture for oil production enterprises
UDC: 004
DOI: -
Authors:
BEKETOV S.M.
1,
FEDYAEVSKAYA D.E.
1,
BURLUTSKAYA ZH.V.
1,
GINTCIAK A.M.
1
1 Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
Keywords: decision-making support system, optimization, re-engineering of business processes, information systems, Archimate, enterprise architecture, oil production enterprises
Annotation:
The development and implementation of decision-making support systems for industrial enterprises that take into account their technological and organizational characteristics remain one of the most urgent tasks in recent decades. In the context of digitalization, modern decision-making support systems should have the functionality to work with big data and apply it in predictive models. Such systems should have cognitive properties that ensure the adoption of globally optimal decisions, taking into account all levels of management. Despite the prevalence of research related to decision-making support systems, the existing solutions do not meet the stated requirements. They overlook the issue of transition from the current to the target architecture when introducing new software systems. The purpose of the work is to design the architecture of an intelligent decision-making support system for an oil production enterprise. The result of the work is the architecture of a single information space at an oil production enterprise, implemented by integrating existing systems at the enterprise, modifying data analysis methods and unifying input data and integrating a scenario optimization module. The proposed architecture includes a description of the required reengineering of business processes as a result of a new information solution introduction. Based on the input data analysis, a model of information flows between the system elements was also developed and target architecture was designed. The Archimate language was used to develop a decision-making support system. The proposed approach to the integration of information systems is universal and can be modified depending on the needs of the organization.
Bibliography:
1. A Review of Multisensor Data Fusion Solutions in Smart Manufacturing: Systems and Trends / A. Tsanousa, E. Bektsis, C. Kyriakopoulos [et al.] // Sensors. – 2022. – Vol. 22, Issue 5. – P. 1734. – DOI: 10.3390/s22051734
2. Mehmood N.Q., Culmone R., Mostarda L. Modeling temporal aspects of sensor data for MongoDB NoSQL database // J. of Big Data. – 2017. – Vol. 4, Issue 1. – P. 8. – DOI: 10.1186/s40537-017-0068-5
3. Big data analysis of IoT-based supply chain management considering FMCG industries / H. Nozari, M. Fallah, H. Kazemipoor, S. Najafi // Business Informatics. – 2021. – Vol. 15, No. 1. – P. 78–96. – DOI: 10.17323/2587-814X.2021.1.78.96
4. Polhill J.G., Edmonds B. Cognition and hypocognition: Discursive and simulation-supported decision-making within complex systems // Futures. – 2023. – Vol. 148. – P. 103121. – DOI: 10.1016/j.futures.2023.103121
5. Lian Duan, Li Da Xu. Data Analytics in Industry 4.0: A Survey // Information Systems Frontiers. – 2021. – P. 1–17. – DOI: 10.1007/s10796-021-10190-0
6. Bousdekis A., Mentzas G. Enterprise Integration and Interoperability for Big Data-Driven Processes in the Frame of Industry 4.0 // Frontiers in Big Data. – 2021. – Vol. 4. – P. 644651. – DOI: 10.3389/fdata.2021.644651
7. Predictive, Prescriptive and Detective Analytics for Smart Manufacturing in the Information Age / B.C. Menezes, J.D. Kelly, A.G. Leal, G.C. Le Roux // IFAC-PapersOnLine. – 2019. – Vol. 52, Issue 1. – P. 568–573. – DOI: 10.1016/j.ifacol.2019.06.123
8. Improving the management effectiveness and decision-making by stakeholders’ perspectives: A case study in a protected area from the Brazilian Atlantic Forest / M.G. Coelho Junior, B.P. Biju, E.C. da Silva Neto [et al.] // J. of Environmental Management. – 2020. – Vol. 272. – P. 111083. – DOI: 10.1016/j.jenvman.2020.111083
9. Simeone A., Zeng Yunfeng, Caggiano A. Intelligent decision-making support system for manufacturing solution recommendation in a cloud framework // The Int. J. of Advanced Manufacturing Technology. – 2021. – Vol. 112, Issue 3-4. – P. 1035–1050. – DOI: 10.1007/s00170-020-06389-1
10. A Decision Support System for Cyber Physical Systems under Disruptive Events: Smart Building Application / M. Zaman, R. Eini, N. Zohrabi, Sh. Abdelwahed // 2022 IEEE Int. Smart Cities Conf. (ISC2), Pafos, Cyprus, Sept. 26–29, 2022. – IEEE, 2022. – P. 1–7. – DOI: 10.1109/ISC255366.2022.9922493
11. A Novel Predictive Maintenance Method Based on Deep Adversarial Learning in the Intelligent Manufacturing System / Liu Changchun, Tang Dunbing, Zhu Haihua, Nie Qingwei // IEEE Access. – 2021. – Vol. 9. – P. 49557–49575. – DOI: 10.1109/ACCESS.2021.3069256
12. Intelligent Maintenance Systems and Predictive Manufacturing / Lee Jay, Ni Jun, Singh Jaskaran [et al.] // J. of Manufacturing Science and Engineering. – 2020. – Vol. 142, Issue 11. – P. 110805. – DOI: 10.1115/1.4047856
13. Anumbe N., Saidy C., Harik R. A Primer on the Factories of the Future // Sensors. – 2022. – Vol. 22, Issue 15. – P. 5834. – DOI: 10.3390/s22155834
14. Titov V.V., Bezmel'nitsyn D.A., Napreeva S.K. Planirovanie funktsionirovaniya predpriyatiya v usloviyakh riska i neopredelennosti vo vneshney i vnutrenney srede // Nauch.-tekhn. vedomosti S.-Peterb. gos. politekhn. un-ta. Ekonomicheskie nauki. – 2017. – T. 10, № 5. – S. 172–183. – DOI: 10.18721/JE.10516
15. Fedyaevskaya D.E. Model' ierarkhicheskogo upravleniya predpriyatiem neftedobychi // Molodezhnaya Nedelya Nauki In-ta promyshlennogo menedzhmenta, ekonomiki i torgovli: sb. tr. vseros. studen. nauch.-ucheb. konf., SPb., 29 noyab. – 03 dek. 2022 g. – SPb.: SPbPU, 2022. – S. 347–349.
16. Sorokin A.B. Kontseptual'noe proektirovanie intellektual'nykh sistem podderzhki prinyatiya resheniy // Ontologiya proektirovaniya. – 2017. – T. 7, № 3(25). – S. 247–269. – DOI: 10.18287/2223-9537-2017-7-3-247-269
17. Artemenko E.S., Fedyaevskaya D.E. Primenenie tsifrovykh instrumentov dlya inzhiniringa protsessov prinyatiya resheniy na neftedobyvayushchem predpriyatii // Fundament. i priklad. issled. v oblasti upravleniya, ekonomiki i torgovli: sb. tr. vseros. nauch.-prakt. i ucheb.-metod. konf., SPb., 15–19 maya 2023 g.: v 8 ch. Ch. 3. – SPb.: Politekh-Press, 2023. – S. 12–20.
18. Markov N.G., Evsyutkin I.V. Spetsializirovannaya servisnaya shina dlya sozdaniya edinogo informatsionnogo prostranstva kompaniy neftegazovoy otrasli // Programmnye produkty i sistemy. – 2019. – № 2. – S. 326–336. – DOI: 10.15827/0236-235X.126.326-336
19. Sheptukhin M.V. Povyshenie kachestva prinyatiya resheniy investitsionnogo planirovaniya putem avtomatizatsii biznes-protsessov // Avtomatizatsiya i informatizatsiya TEK. – 2022. – № 12(593). – S. 23–26. – DOI: 10.33285/2782-604X-2022-12(593)-23-26
20. Kompleksnoe modelirovanie protsessov neftedobychi: analiticheskiy obzor / M.V. Bolsunovskaya, A.M. Gintsyak, D.E. Fedyaevskaya [i dr.] // Avtomatizatsiya i informatizatsiya TEK. – 2023. – № 2(595). – S. 51–62. – DOI: 10.33285/2782-604X-2023-2(595)-51-62