An approach to the development of a domestic explosion-proof eddy-current encoder with an angle-to-code converter of the servo type for the oil and gas industry, the chemical industry and the energy sector
UDC: 621.317.49
DOI: -
Authors:
ARGASTSEV A.YU.
1,
ZHDANEEV O.V.
2,3,
PROKOFIEV G.V.
4,
STAKHIN E.V.
4
1 RASU, Moscow, Russia
2 A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
3 Yugra State University, Khanty-Mansiysk, Russia
4 IDM-Plus, Zelenograd, Russia
Keywords: electromechanical systems, encoder, inductive encoder, eddy currents, conversion correction
Annotation:
Modern requirements for high-precision electromechanical systems used in the extraction, transportation and processing of minerals as well as related equipment production require accurate and stable measurements with high repeatability. The authors of the article consider a comparative analysis of optical and eddy-current encoders in order to identify the advantages of the latter ones application in these industries. Optical encoders have long been considered the benchmark for precision and stability, but their high cost has been a significant limitation. Recent advances of inductive eddy-current encoders have significantly narrowed the gap in key electrical parameters with their optical counterparts, while offering a more cost-effective solution. Eddy-current encoders now offer resolutions of up to 16 bits with an accuracy of 0,09°, which was previously the exclusive domain of optical systems. The eddy-current encoder technology presented in this study has high potential for export application due to its efficiency, reliability and versatility. For example, compliance with automotive standards AEC Q100, ESD, EMC and ASIL makes the proposed encoder ideal for mission-critical automotive applications. This study also assessed the advantages and disadvantages of various methods for correcting signal-to-angle conversion. Based on the analysis of these methods, the most preferred correction method for the development of an eddy-current encoder was selected. In addition, the developed eddy-current encoder has an extended operational temperature range from –40 up to +160 °C, thus allowing its use in various climatic conditions. Explosion-proof design according to the requirements of ATEX and IECEx classes makes it popular for use in potentially explosive environments. Thus, this study not only demonstrates the advantages of eddy-current encoders over optical ones, but also substantiates the necessity to develop a domestic eddy-current encoder with improved characteristics for a wide range of applications. Russian manufacturers, relying on these advantages, can take leading positions in the international market.
Bibliography:
1. Zhdaneev O.V., Zuev S.S. Vyzovy dlya energosektora Rossii do 2035 goda // Energeticheskaya politika. – 2020. – № 3(145). – S. 12–23. – DOI: 10.46920/2409-5516_2020_3145_12
2. Tsifrovizatsiya postavok i primeneniya materialov/oborudovaniya v neftegazodobyvayushchey otrasli kak odin iz shagov povysheniya effektivnosti i prozrachnosti protsessov / R.A. Murtazin, A.S. Kharitonov, G.G. Gilaev [i dr.] // Avtomatizatsiya i informatizatsiya TEK. – 2023. – № 11(604). – S. 14–18. – DOI: 10.33285/2782-604X-2023-11(604)-14-18
3. Zhdaneev O.V., Zaytsev A.V., Lobankov V.M. Metrologicheskoe obespechenie apparatury dlya geofizicheskikh issledovaniy // Zap. Gornogo in-ta. – 2020. – T. 246. – S. 667–677. – DOI: 10.31897/PMI.2020.6.9
4. Zhdaneev O.V. Otsenka urovnya lokalizatsii produktsii pri importozameshchenii v otraslyakh TEK // Ekonomika regiona. – 2022. – T. 18, № 3. – S. 770–786. – DOI: 10.17059/ekon.reg.2022-3-11
5. Pat. 2741075 Ros. Federatsiya, MPK H03M 1/48. Sledyashchiy sinusno-kosinusnyy preobrazovatel' ugla v kod so vstroennoy tsifrovoy korrektsiey oshibki preobrazovaniya / G.V. Prokof'ev; patentoobladatel' OOO "IDM-Plyus". – № 2020118446; zayavl. 26.05.2020; opubl. 22.01.2021, Byul. № 3.
6. Dauth R., Gerlach G., Fella S. Inductive coupled-coils angle encoders with improved performance and linearity // Technisches Messen. – 2023. – Vol. 90, Issue S1. – P. S2–S7. – DOI: 10.1515/teme-2023-0068
7. Magnitnoe pole neideal'nykh katushek Gel'mgol'tsa / D.E. Kharabadze, G.M. Nikoladze, V.S. Shevtsov, P.A. Polyakov // Elektrichestvo. – 2020. – № 9. – S. 54–57. – DOI: 10.24160/0013-5380-2020-9-54-57
8. Analogo-tsifrovye preobrazovateli sostavlyayushchikh peremeshcheniya s primeneniem mikroelektronnykh sinusno-kosinusnykh magnitnykh enkoderov / Yu.S. Smirnov, T.A. Kozina, E.V. Yurasova, A.V. Sokolov // Izmeritel'naya tekhnika. – 2014. – № 1. – S. 28–31.
9. Yu Lintao, Zhang Lidan. FPGA-based 10Msps high-speed encoder // Proceedings. Vol. 12306. Second Int. Conf. on Digital Signal and Computer Communications (DSCC 2022), Changchun, China, Apr. 8–10, 2022. – DOI: 10.1117/12.2641268
10. Bitriá R., Palacín J. Optimal PID Control of a Brushed DC Motor with an Embedded Low-Cost Magnetic Quadrature Encoder for Improved Step Overshoot and Undershoot Responses in a Mobile Robot Application // Sensors. – 2022. – Vol. 22, Issue 20. – P. 7817. – DOI: 10.3390/s22207817
11. Nonlinear Error Correction for Magnetic Encoders / Chuang Hsiang-Chun, Kung Chung-Wei, Chen Li-Wu, Jiang Shyh-Biau // IEEE Sensors J. – 2023. – Vol. 23, Issue 9. – P. 9129–9135. – DOI: 10.1109/JSEN.2022.3214575
12. Phase Demodulation Strategy Based on Kalman Filter for Sinusoidal Encoders / Zhao Guobo, Ban Yaowen, Zhang Zhenghui [et al.] // IEEE Sensors J. – 2023. – Vol. 23, Issue 10. – P. 10625–10632. – DOI: 10.1109/JSEN.2023.3264846
13. Rassudov L.N. Uchet apparatnykh ogranicheniy pri postroenii sistem upravleniya servoprivoda // Elektrichestvo. – 2020. – № 7. – S. 57–64. – DOI: 10.24160/0013-5380-2020-7-57-64
14. Harmonic analysis of the arctangent function regarding the angular error introduced by superimposed Fourier series for application in sine/cosine angle encoders / S. Kuntz, R. Dauth, G. Gerlach [et al.] // Sensors and Actuators A: Physical. – 2022. – Vol. 344. – P. 113585. – DOI: 10.1016/j.sna.2022.113585