Top.Mail.Ru

Scientific and technical journal

«Automation and Informatization of the fuel and energy complex»

ISSN 0132-2222

Use of wireless sensor networks and cloud computing to control an automatic fire extinguishing system

UDC: 004.051:621.396
DOI: -

Authors:

DHEYAB O.A.1,2,
CHERNIKOV D.YU.1,
SELIVANOV A.S.1

1 Siberian Federal University, Krasnoyarsk, Russia
2 University of Technology, Baghdad, Iraq

Keywords: wireless sensor networks, automatic fire extinguishing system, YOLOv5, fire detection, cloud computing, Realtime Database, ESP8266

Annotation:

The use of modern technologies in safety systems at oil and gas facilities is important for reducing risks to health, safety and the environment, thus leading to the necessity of early detection of fires and their rapid extinguishing. One of such technologies is application of automatic fire extinguishing systems, which allows fires to be extinguished faster and more efficiently. But these systems require constant development to improve their efficiency and solve the problem of data processing speed. The authors of the article consider the problem of enhancing automatic fire extinguishing systems efficiency by advanced technologies integration such as deep learning, cloud computing, and wireless sensor networks. The camera was used as an optical sensor in a wireless sensor network to send surveillance video to cloud computing for processing. Cloud computing was used to process video data and detect fires with an accuracy of up to 90 %. Cloud computing was also used to exchange data between the fire detection system, the control center and the fire extinguishing system. It is also possible to connect more than one oil installation to a remote monitoring and control center using cloud computing. The total time of detecting the fire and starting its extinguishing made less than two seconds. The proposed system allows monitoring and controlling more than one site at one and the same time.

Bibliography:

1. Technologies in Arctic Oil and Gas Resources Extraction: Global Trends and Russian Experience / E. Samylovskaya, A. Makhovikov, A. Lutonin [et al.] // Resources. – 2022. – Vol. 11, Issue 3. – P. 29. – DOI: 10.3390/resources11030029
2. The Internet of Things in the Oil and Gas Industry: A Systematic Review / T.R. Wanasinghe, R.G. Gosine, L.A. James [et al.] // IEEE Internet of Things J. – 2020. – Vol. 7, Issue 9. – P. 8654–8673. – DOI: 10.1109/JIOT.2020.2995617
3. Issledovanie tselesoobraznosti neyrosetevogo modelirovaniya rezhimov raboty kompressornykh stantsiy / A.V. Oleynikov, A.S. Kazak, A.V. Belinskiy [i dr.] // Avtomatizatsiya i informatizatsiya TEK. – 2024. – № 2(607). – S. 10–19.
4. Razrabotka i aprobatsiya metodicheskikh podkhodov i tsifrovykh tekhnologiy neyrosetevogo proksi-modelirovaniya ustanovivshegosya dvukhfaznogo techeniya mnogokomponentnoy smesi v sistemakh sbora i promyslovoy podgotovki gaza (na primere Chayandinskogo NGKM) / A.V. Belinskiy, V.A. Marishkin, V.V. Samsonova, P.V. Pyatibratov // Avtomatizatsiya i informatizatsiya TEK. – 2024. – № 4(609). – S. 44–59.
5. Dheyab O.A., Chernikov D.Yu., Selivanov A.S. Using the City's Surveillance Cameras to Create a Visual Sensor Network to Detect Fires // J. of Siberian Federal University. Engineering and Technologies. – 2024. – Vol. 17, No. 2. – P. 266–275.
6. Dheyab O.A., Chernikov D.Yu., Selivanov A.S. Integration of Deep Learning and Wireless Sensor Networks for Accurate Fire Detection in Indoor Environment // J. of Siberian Federal University. Engineering and Technologies. – 2024. – Vol. 17, No. 1. – P. 124–135.
7. Dheyab O.A., Chernikov D., Selivanov A. Fire Size Calculation for Automatic Calibration of Water Spray Nozzle in Firefighting Robots // IEEE Proccedings of 2023 5th Int. Conf. on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA), Lipetsk, Nov. 08–10, 2023. Vol. 5. – Lipetsk: Lipetsk State Technical University, 2023. – P. 231–234. – DOI: 10.1109/SUMMA60232.2023.10349438
8. El Zouka H.A., Hosni M.M. Towards Secure Integration of Wireless Sensor Networks and Cloud Computing // 2019 IEEE Global Conf. on Internet of Things (GCIoT), Dubai, United Arab Emirates, Dec. 04–07, 2019. – IEEE, 2019. – P. 1–7. – DOI: 10.1109/GCIoT47977.2019.9058407
9. Energy Optimization of Wireless Sensor Embedded Cloud Computing Data Monitoring System in 6G Environment / Yang Huaiyuan, Zhou Hua, Liu Zhenyu, Deng Xiaofan // Sensors. – 2023. – Vol. 23, Issue 2. – P. 1013. – DOI: 10.3390/s23021013
10. Cloud Computing based Wireless Sensor Network in Data Transmission with Routing Analysis Protocol and Deep Learning Technique / K.K. Pramanik, S.B. Rahane, V.N. Jayamani [et al.] // Int. J. of Intelligent Systems and Applications in Engineering. – 2023. – Vol. 11, No. 3s. – P. 165–169.
11. Ali I., Zahan H., Mastorakis S. Sensor Clouds: Recent Advancements, Use Cases and Open Challenges // IEEE Internet of Things Magazine. – 2024. – Vol. 7, Issue 1. – P. 98–103. – DOI: 10.1109/IOTM.001.2300028
12. Cloud Computing for IoT Sensing Data / D. Kumar, H. Sharma, A. Prakash, M. Husain // Technological Advancements in Data Processing for Next Generation Intelligent Systems. – 2024. – Chapter 1. – P. 1–23. – DOI: 10.4018/979-8-3693-0968-1.ch001
13. Deyab O.A., Chernikov D.Yu., Selivanov A.S. Uluchshenie effektivnosti pozharnykh vodometov za schet ispol'zovaniya glubokogo obucheniya i besprovodnoy sensornoy seti // Avtomatizatsiya i informatizatsiya TEK. – 2024. – № 8(613). – S. 26–33.
14. Bell Ch. Cloud computing // MicroPython for the Internet of Things: A Beginner’s Guide to Programming with Python on Microcontrollers. – Berkeley, CA: Apress, 2024. – P. 413–424.
15. Guntara R.G. Pemanfaatan Google Colab Untuk Aplikasi Pendeteksian Masker Wajah Menggunakan Algoritma Deep Learning YOLOv7 // Jurnal Teknologi Dan Sistem Informasi Bisnis. – 2023. – Vol 5, No. 1. – P. 55–60. – DOI: 10.47233/jteksis.v5i1.750
16. SpliceAI-visual: a free online tool to improve SpliceAI splicing variant interpretation / J.-M. de Sainte Agathe, M. Filser, B. Isidor [et al.] // Human Genomics. – 2023. – Vol. 17, Issue 1. – P. 7. – DOI: 10.1186/s40246-023-00451-1
17. Younis M.F., Alwan Z.S. Monitoring the performance of cloud real-time databases: A firebase case study // 2023 Al-Sadiq Int. Conf. on Communication and Information Technology (AICCIT), Al-Muthana, Iraq, July 04–06, 2023. – IEEE, 2023. – P. 240–245. – DOI: 10.1109/AICCIT57614.2023.10217953
18. Napitupulu H.Y.P., Nugraha I.G.D. Fog Computing-Based System for Decentralized Smart Parking System by Using Firebase // Jurnal Nasional Teknik Elektro dan Teknologi Informasi. – 2024. – Vol. 13, No. 1. – P. 44–52. – DOI: 10.22146/jnteti.v13i1.10095
19. Enhancing Ultrasonic Sensor Goggles for Blinds Using Node MCU ESP8266 Microprocessor / K.V. Thopate, K. Shirbavikar, R.V. Kulkarni [et al.] // Int. J. of Intelligent Systems and Applications in Engineering. – 2024. – Vol. 12, No. 1. – P. 611–618.
20. Zinkevich A.V. ESP8266 Microcontroller Application in Wireless Synchronization Tasks // 2021 Int. Conf. on Industrial Engineering, Applications and Manufacturing (ICIEAM), Sochi, Russia, May 17–21, 2021. – IEEE, 2021. – P. 670–674. – DOI: 10.1109/ICIEAM51226.2021.9446411