Scientific and technical journal

«Automation and Informatization of the fuel and energy complex»

ISSN 0132-2222

Automation and Informatization of the fuel and energy complex
Control of electric motors heating temperature based on the solution of the thermal conductivity inverse problem

UDC: 004.942:536.2:621.313.333
DOI: -

Authors:

KANEVSKAYA REGINA D.1,
FEOKTISTOV EVGENY A.1

1 National University of Oil and Gas "Gubkin University", Moscow, Russia

Keywords: temperature control, electric motor, inverse problem of thermal conductivity, analytical method, difference method, algorithms

Annotation:

The problem of determining the average temperature of the stator windings by temperature measurements on the surface of an asynchronous motor is considered. The problem was studied based on solving the direct and inverse problems of stator thermal conductivity in the motor housing. The direct problem solution made it possible to obtain a non-stationary temperature field in the stator and motor housing as well as a heat flux density field; these data were used to solve the inverse problem of thermal conductivity. The inverse problem of thermal conductivity (IPThC) comes down to determining the boundary condition – temperature or heat flux on the stator active side when measuring the temperature and heat flux density on the passive side – the surface of the motor housing. The inverse problem of thermal conductivity was solved on the basis of analytical and difference methods. The results of the solution confirm the theoretical possibility of estimating the temperature of the stator winding of the motor by the results of measuring the temperature on its surface. The proposed difference algorithms for solving the inverse problem of thermal conductivity are stable and they provide acceptable accuracy and delay in estimating the heating of the winding, taking into account the temperature measurement error. Theoretical studies were tested in laboratory conditions and demonstrated positive results.

Bibliography:

1. Otsenka teplovogo sostoyaniya elektrodvigateley peremennogo toka kompressornykh stantsiy magistral'nykh gazoprovodov / A.M. Zyuzev, O.V. Kryukov, V.P. Metel'kov, S.G. Mikhal'chenko // Izv. Tomskogo politekhn. un-ta. Inzhiniring georesursov. – 2021. – T. 332, № 1. – S. 88–96. – DOI: 10.18799/24131830/2021/1/3002
2. Valiullin K.R., Tushev S.I. Matematicheskaya model' nagreva asinkhronnogo dvigatelya s korotkozamknutym rotorom na osnove ekvivalentnoy teplovoy skhemy // Vestn. YuUrGU. Ser.: Energetika. – 2022. – T. 22, № 4. – S. 67–76. – DOI: 10.14529/power220408
3. Jurayeva K., Iksar E., Khalilova I. Calculation of the thermal state of a traction asynchronous frequency-controlled motor // Polish J. of Science. – 2021. – № 43. – P. 76–78.
4. The Laboratory Analysis of the Thermal Processes Occurring in Low-Voltage Asynchronous Electric Motors / Ł. Nogal, A. Magdziarz, D.D. Rasolomampionona [et al.] // Energies. – 2021. – Vol. 14, Issue 8. – P. 2056. – DOI: 10.3390/en14082056
5. Grebneva O.A., Novitskiy N.N. Zadacha monitoringa rezhimov raboty teplovykh setey: issledovanie i formalizatsiya // Avtomatizatsiya i informatizatsiya TEK. – 2023. – № 8(601). – S. 66–73. – DOI: 10.33285/2782-604X-2023-8(601)-66-73
6. Ershov M.S., Feoktistov E.A. Analiticheskoe reshenie dlya shestimassovoy termodinamicheskoy modeli asinkhronnogo dvigatelya zakrytogo ispolneniya // Izv. Tomskogo politekhn. un-ta. Inzhiniring georesursov. – 2022. – T. 333, № 2. – S. 53–61. – DOI: 10.18799/24131830/2022/2/3331
7. Ershov M.S., Feoktistov E.A. Modeli i algoritmy prognozirovaniya nagreva asinkhronnogo dvigatelya pri izmenenii rezhimov ego raboty // Elektrotekhnika. – 2021. – № 11. – S. 82–90.
8. Burggraf O.R. An exact solution of the inverse problem in heat conduction theory and application // J. of Heat Transfer. – 1964. – Vol. 86. – P. 373–382.
9. Bek Dzh., Blakuell B., Sent-Kler Ch. ml. Nekorrektnye obratnye zadachi teploprovodnosti: per. s angl. – M.: Mir, 1989. – 312 s.
10. Taler J., Duda P. Solving Direct and Inverse Heat Conduction Problems. – Springer, 2006. – XXVI, 889 p.
11. Gallyamov I.I., Yusupova L.F., Gilyazetdinov R.A. Obzor programmnykh produktov dlya resheniya zadach, svyazannykh s teplomassoperenosom // Avtomatizatsiya i informatizatsiya TEK. – 2022. – № 10(591). – S. 60–64. – DOI: 10.33285/2782-604X-2022-10(591)-60-64
12. Zyuzev A.M., Metel'kov V.P. O temperaturnoy zavisimosti parametrov termodinamicheskikh modeley elektrodvigateley // Izv. vuzov. Elektromekhanika. – 2016. – № 2. – S. 12–17. – DOI: 10.17213/0136-3360-2016-2-12-17
13. Fletcher K. Vychislitel'nye metody v dinamike zhidkostey: v 2 t. T. 1: per. s angl. – M.: Mir, 1991. – 504 s.
14. Mityakov A.V. Gradientnye datchiki teplovogo potoka v fizicheskom i promyshlennom eksperimente // Izv. vuzov. Priborostroenie. – 2009. – T. 52, № 7. – S. 75–81.
15. Chislennye metody resheniya nekorrektnykh zadach / A.N. Tikhonov, A.V. Goncharskiy, V.V. Stepanov, A.G. Yagola. – M.: Nauka, 1990. – 232 s.
16. Yaryshev N.A. Teoreticheskie osnovy izmereniya nestatsionarnoy temperatury. – 2-e izd., pererab. – L.: Energoatomizdat, 1990. – 256 s.
17. Error factors in precise thermal conductivity measurement using 3ω method for wire samples / Y. Sekimoto, R. Abe, H. Kojima [et al.] // J. of Thermal Analysis and Calorimetry. – 2023. – Vol. 148. – P. 2285–2296. – DOI: 10.1007/s10973-022-11892-6
18. Golsorkhi N.A., Tehrani H.A. Levenberg-Marquardt Method for Solving the Inverse Heat Transfer Problems // J. of Mathematics and Computer Science. – 2014. – Vol. 13, Issue 4. – P. 300–310. – DOI: 10.22436/jmcs.013.04.03