Scientific and technical journal

«Automation and Informatization of the fuel and energy complex»

ISSN 0132-2222

Automation and Informatization of the fuel and energy complex
On the issue of non-equilibrium and uncertainty of the "oil reservoir" system

UDC: 622.27
DOI: -

Authors:

STEPANOV SERGEY V.1,2,
STEPANOV ANATOLY V.1,3

1 Tyumen Oil Research Center, Tyumen, Russia
2 University of Tyumen, Tyumen, Russia
3 Industrial University of Tyumen, Tyumen, Russia

Keywords: oil reservoir, non-equilibrium, entropy, relaxation time, relative phase permeability, development of an oil deposit

Annotation:

The authors of the article discuss issues related to the non-equilibrium and uncertainty of the "oil reservoir" system. The scale of the core and the scale of the near wellbore area are considered. The pulsations of the pressure drop in the laboratory experiment on the relative phase permeability are explained from the perspective of jet flow and slug flow modes in a porous medium. Based on the analytical assessment of the relaxation time, it was revealed that the multiphase flow near the well is of a non-equilibrium nature. The author's phenomenological model of taking into account the flow non-equilibrium is presented, which allows correct reproduction of the stabilized zone behavior in case of the liquid constant flow rate as well as water-cut oscillations in case of the liquid non-constant flow rate. It is noted that the occurrence of oscillations can be explained by the effect of self-organization of a strongly non-equilibrium open system. It is shown that understanding of the oil reservoir state requires the use of the entropy approach and phase portraits. Examples of phase portraits for four reservoir models are given. The assumption is substantiated that there exist such well management options that can lead to the formation of dissipative structures in the "oil reservoir" system. Understanding of such structures can have an impact on the efficiency of a field development.

Bibliography:

1. Mirzadzhanzade A.Kh., Khasanov M.M., Bakhtizin R.N. Modelirovanie protsessov neftegazodobychi. Nelineynost', neravnovesnost', neopredelennost'. – M.-Izhevsk: In-t komp'yuter. issled., 2004. – 368 s.
2. Parmon V.N. Lektsii po termodinamike neravnovesnykh protsessov dlya khimikov: ucheb. posobie. – Novosibirsk: Novosib. gos. un-t., 2004. – 296 s.
3. Tyrsin A.N. Vektornoe entropiynoe modelirovanie mnogomernykh stokhasticheskikh sistem. – M.: Nauka, 2022. – 231 s.
4. Impact of Multiscale Modelling on Predicted Porosity and Permeability Distributions in the Fluvial Deposits of the Upper Lunde Member (Snorre Field, Norvegian Continental Shelf) / K. Nordahl, C. Messina, H. Berland [et al.] // Sediment-Body Geometry and Heterogeneity: Analogue Studies for Modelling the Subsurface: Special Publications. – London: Geological Society, 2014. – DOI: 10.1144/SP387.10
5. Ivanov A.V., Stepanov S.V. Matematicheskiy metod modelirovaniya raboty otdel'nykh skvazhin s uchetom neravnovesnosti otnositel'nykh fazovykh pronitsaemostey // Vestn. Tyumen. gos. un-ta. Fiz.-mat. modelirovanie. Neft', gaz, energetika. – 2020. – T. 6, № 1(21). – S. 208–217. – DOI: 10.21684/2411-7978-2020-6-1-208-217
6. Khasanov M.M., Bulgakova G.T. Nelineynye i neravnovesnye effekty v reologicheski slozhnykh sredakh. – M.-Izhevsk: In-t komp'yuter. issled., 2003. – 288 s.
7. Kanevskaya R.D., Nesterov S.E. Otsenka fil'tratsionnykh parametrov plasta po dannym dobychi bez ostanovki skvazhiny dlya provedeniya gidrodinamicheskikh issledovaniy // Avtomatizatsiya i informatizatsiya TEK. – 2024. – № 1(606). – S. 36–41.
8. Pore-to-Field Scale Modeling of WAG / T. Kløv, P.E. Øren, J.Å. Stensen [et al.] // SPE Annual Technical Conf. and Exhibition, Denver, Colorado, Oct. 5–8, 2003. – P. 1–12. – DOI: 10.2118/84549-MS
9. Baroud C.N., Gallaire F., Dangla R. Dynamics of Microfluidic Droplets // Lab on a Chip. – 2010. – Vol. 10, Issue 16. – P. 2032–2045. – DOI: 10.1039/c001191f
10. Barenblatt G.I., Entov V.M., Ryzhik V.M. Dvizhenie zhidkostey i gazov v prirodnykh plastakh. – M.: Nedra, 1984. – 211 s.
11. Aziz Kh., Settari E. Matematicheskoe modelirovanie plastovykh sistem: per. s angl. – M.: Nedra, 1982. – 407 s.
12. Kanevskaya R.D. Matematicheskoe modelirovanie gidrodinamicheskikh protsessov razrabotki mestorozhdeniy uglevodorodov. – M.-Izhevsk: In-t komp'yuter. issled., 2003. – 128 s.
13. Ispol'zovanie entropiynogo modelirovaniya dlya analiza effektivnosti sistemy zavodneniya / S.V. Stepanov, A.N. Tyrsin, A.A. Ruchkin, T.A. Pospelova // Neft. khoz-vo. – 2020. – № 6. – S. 62–67. – DOI: 10.24887/0028-2448-2020-6-62-67
14. Povyshenie dostovernosti modelirovaniya vzaimovliyaniya skvazhin dlya analiza effektivnosti sistemy zavodneniya / A.N. Tyrsin, S.V. Stepanov, A.A. Ruchkin, A.D. Bekman // Mat. modelirovanie. – 2023. – T. 35, № 6. – S. 63–80. – DOI: 10.20948/mm-2023-06-05
15. Bikkin Kh.M., Lyapilin I.I. Neravnovesnaya termodinamika i fizicheskaya kinetika. – Ekaterinburg: UrO RAN, 2009. – 500 s.
16. Soprovozhdenie razrabotki neftyanykh mestorozhdeniy s ispol'zovaniem modeley CRM / S.V. Stepanov, A.D. Bekman, A.A. Ruchkin, T.A. Pospelova. – Tyumen': IPTs "Ekspress", 2021. – 300 s.
17. Loskutov A.Yu. Matematicheskie osnovy khaoticheskikh dinamicheskikh sistem: kurs lektsiy. – M.: MGU, 2007. – 78 s.