On the problem of choosing the optimal geometry of an electromagnetic flow meter flow-measuring section to increase the reliability in difficult hydrodynamic conditions
UDC: 681.121.89.082.74
DOI: -
Authors:
BAKIROV RENAT T.
1,2,
EVDOKIMOV YURI K.
2
1 D. Mendeleyev Institute for Metrology, St. Petersburg, Russia
2 KNRTU-KAI, Kazan, Russia
Keywords: energy resources, accounting, electromagnetic flow meter, design, flow measuring section, measuring channel of the primary converter
Annotation:
The tasks of accounting for energy resources are carried out on the basis of the quantitative value data that was produced, transmitted, consumed, and determined using metering devices. Metering devices are also used in the areas where monitoring, dosing and regulation of technological parameters are required. On the territory of the Russian Federation, in a larger percentage ratio, electromagnetic flow transducers of the classical type (with a circular cross-section of the flow-measuring section) are used to determine the volume of liquid in a flow and the volumetric flow rate of liquid at industrial facilities, at points of technical and commercial accounting of energy resources as well as in control and dosing systems). Flow meters of the classical type do not provide reliable measurements under operating conditions when the hydrodynamic stabilization of the fluid flow is disrupted. In 1951, a flow meter with a rectangular cross-section of the flow measuring section was mentioned in one of the articles, the measurements of which do not depend on the flow velocity profile. Today in the Russian Federation there is no widespread production and use of flow meters with similar design characteristics. The problem lies in choosing the optimal geometry and design of the flow-measuring section of the primary converter, because a large variety of options can be offered for just one nominal flow meter diameter.
Bibliography:
1. Shercliff J.A. The Theory of Electromagnetic Flow-Measurement. – Cambridge University Press, 1962. – 146 p.
2. Korsunskiy L.M. Elektromagnitnyy raskhodomer s pryamougol'nym kanalom // Izmeritel'naya tekhnika. – 1960. – № 10. – S. 56–60.
3. Katys G.P. Ob"emnye raskhodomery. – M.; L.: Energiya, 1965. – 88 s. – (B-ka po avtomatike; Vyp. 124).
4. Gray J.O., Sanderson M.L. Electromagnetic differential flowmeter // Electronics Letters. – 1970. – Vol. 6, Issue 7. – P. 194–196. – DOI: 10.1049/EL:19700139
5. Pavlov A.V. Teoreticheskoe i eksperimental'noe issledovanie elektromagnitnogo metoda izmereniya raskhoda zhidkostey: dis. … kand. tekhn. nauk: 05.13.05. – Kazan', 2000. – 210 s.
6. Pat. UA 42366, MPK G01F 15/14. Preobrazovatel' elektromagnitnogo raskhodomera / O.M. Likhachov. – № 2001010667; zayavl. 30.01.2001; opubl. 15.10.2001.
7. Bin Li, Jun Yao, Xia Li. The Analysis and Application of the Rectangular Electromagnetic Flowmeter // Proceedings of the 20th IEEE Instrumentation Technology Conf., Vail, Colorado, USA, May 20–22, 2003. – P. 490–494. – DOI: 10.1109/IMTC.2003.1208206
8. Padegimas R., Virbalis J.A., Vaikasas R. Selection of the Magnetic Circuit Design for Electromagnetic Fluid Flow Converter with Rectangular Channel // Elektronika Ir Elektrotechnika. – 2006. – Vol. 67, No. 3. – P. 41–46.
9. Sungtaek L. The improvement of meter performance of EM sensing flowmeters, using software modelling: PhD thesis. – Cranfield University, 2008. – XVI, 274 p.
10. Pat. EP 2187180, Int. Cl. G01F 1/58, G01F 15/14, B21D 26/02. Magnetic-inductive flow measuring apparatus / S. Neuburger, J. Neven; Assignee Krohne AG. – Apple. No. 09013801.7; Filed Nov. 03, 2009; Date of Patent May 15, 2019.
11. Pat. 124792 Ros. Federatsiya, MPK G01F 1/58. Elektromagnitnyy raskhodomer / D.I. Konoplyanik, V.E. Losev; patentoobladatel' ZAO "Vzlet". – № 2012116821/28; zayavl. 24.04.2012; opubl. 10.02.2013, Byul. № 4.
12. Pat. EP 2600119, Int. Cl. G01F 1/58, G01F 15/14. Magnetisch-induktives Durchflussmessgerät / J. Neven; Assignee Krohne AG. – Apple. No. 12007664.1; Filed Nov. 12, 2012; Date of Patent July 05, 2013.
13. Tiejun Liu, Guangming Zhang. Magnetic Circuit Design for Electromagnetic Flow Transducer with Locally Shrunk Measurement Pipe // Int. Conf. on Future Computer and Communication Engineering (ICFCCE 2014), Sydney, Australia, May 29–30, 2014. – Atlantis Press, 2014. – P. 11–14. – DOI: 10.2991/icfcce-14.2014.4
14. Tie Jun Liu, Min Zhou. Battery Powered Electromagnetic Flow Meter with Locally Shrunk Measurement Pipe // Applied Mechanics and Materials. – 2014. – Vol. 568-570. – P. 315–319. – DOI: 10.4028/www.scientific.net/AMM.568-570.315
15. Pat. 2504736 Ros. Federatsiya, MPK G01F 1/58. Elektromagnitnyy raskhodomer / V.K. Nedzvetskiy, V.A. Magala, A.L. Manin; patentoobladatel' ZAO "Upravlyayushchaya kompaniya Kholdinga "Teplokom". – № 2012132002/28; zayavl. 25.07.2012; opubl. 20.01.2014, Byul. № 2.
16. Pat. DE 102014113408, Int. Cl. G01F 1/58. Verfahren zur Herstellung eines Magnetisch-induktives Durchflussmessgeräts mit zum Teilreduziertem Querschnitt / A. Andres; Assignee Endress + Hauser Flowtec AG. – Apple. No. 102014113408.7; Filed Sept. 17, 2014; Date of Patent March 7, 2016.
17. Design method for flow tube structure of electromagnetic water meter with shrunk measurement tube based on pressure loss-flow restriction / Li-Ping Liang, Yu-Shi Ge, Ke-Jun Xu [et al.] // Flow Measurement and Instrumentation. – 2020. – Vol. 74. – P. 101778. – DOI: 10.1016/j.flowmeasinst.2020.101778
18. Parameter Optimization Method of EWM Rectangular Reducer Based on RSM-MOGA / Feiyan Qi, Liping Liang, Lingbin Chai, Kun Wei // Recent Advances in Sustainable Energy and Intelligent Systems: 7th Int. Conf. on Life System Modeling and Simulation, LSMS 2021 and 7th Int. Con. on Intelligent Computing for Sustainable Energy and Environment, ICSEE 2021, Hangzhou, China, Oct. 30 – Nov. 1, 2021, Proceedings, Part II. – 2021. – P. 485–496. – DOI: 10.1007/978-981-16-7210-1_46
19. Vliyanie profilya skorosti na tochnost' elektromagnitnykh raskhodomerov / R.T. Bakirov, O.K. Shabalina, Yu.K. Evdokimov, A.S. Shabalin // Avtomatizatsiya, telemekhanizatsiya i svyaz' v neftyanoy prom-sti. – 2021. – № 6(575). – S. 45–49. – DOI: 10.33285/0132-2222-2021-6(575)-45-49
20. Bakirov R.T. Razrabotka optimal'noy geometrii protochnoy chasti pervichnogo preobrazovatelya elektromagnitnogo raskhodomera s povyshennoy metrologicheskoy nadezhnost'yu // Avtomatizatsiya i informatizatsiya TEK. – 2023. – № 4(597). – S. 54–61. – DOI: 10.33285/2782-604X-2023-4(597)-54-61