Detection of leaks in pipelines using particles filtration method
UDC: 681.5.08:519.876.5:004.942:66.042.945
DOI: -
Authors:
KOSTANDYAN ARTUR V.
1,
GORBUNOV SERGEY S.
2,
ALEKSANYAN DIANA A.3,
EGOROV ALEXANDER F.
4,
SIDOROV VALERY V.
5
1 KSIMATIC, Moscow, Russia
2 MCE-Engineering, Moscow, Russia
3 Moscow Technical University of Communications and Informatics, Moscow, Russia
4 D. Mendeleev University of Chemical Technology, Moscow, Russia
5 National University of Oil and Gas "Gubkin University", Moscow, Russia
Keywords: pipeline, leak detection, particle filter, state estimation, leak localization
Annotation:
For most existing leak detection systems (LDS) in pipelines, localization of leaks locations is still an unsolved problem. The main reason for this problem is the limited number of sensors installed on long-distance pipelines. Due to the measurements insufficiency, the exact location of the leak cannot be easily determined. The authors of the presented article consider the use of particles filter method as a "soft" sensor to estimate operating parameters at intermediate points of a pipeline using available measurements at the end points. The difference in readings between the estimated states and actual measurements at intermediate points is used to detect and locate leaks. The proposed method improves the accuracy of leak localization by using intermediate pressure measurements. Simulation results prove the effectiveness of the proposed method.
Bibliography:
1. Stafford M., Williams N., Britain G. Pipeline leak detection study. – HSE Books, 1996.
2. Review of pipeline leak detection technologies / Jun Zhang, A. Hoffman, K. Murphy [et al.] // Pipeline Simulation Interest Group Annual Meeting, Prague, Czech Republic, April 16–19, 2013. – Pipeline Simulation Interest Group, 2013. – URL: https://www.atmosi.com/media/1412/review-of-pipeline-leak-detection-technologies.pdf
3. Geiger G. State-of-the-art in leak detection and localization // Oil Gas European Magazine. – 2006. – Vol. 32, Issue 4. – P. 193–198.
4. Geiger I.G. Principles of leak detection // Fundamentals of leak detection. – KROHNE oil and gas, 2005.
5. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking / M.S. Arulampalam, S. Maskell, N.J. Gordon, T. Clapp // IEEE Transactions on Signal Processing. – 2002. – Vol. 50, Issue 2. – P. 174–188. – DOI: 10.1109/78.978374
6. Ristic B., Arulampalam S., Gordon N.J. Beyond the Kalman Filter: Particle Filters for Tracking Applications. – Artech House, 2004. – 299 p.
7. Ming Liu, Shu Zang, Donghua Zhou. Fast Leak Detection and Location of Gas Pipelines Based on an Adaptive Particle Filter // Int. J. of Applied Mathematics and Computer Science. – 2005. – Vol. 15, Issue 4. – P. 541–550.
8. Thomas P.J. Simulation of Industrial Processes for Control Engineers. – Butterworth-Heinemann, 1999. – 390 p. – DOI: 10.1016/b978-0-7506-4161-6.x5000-7
9. Uilhoorn F.E. State-space estimation with a Bayesian filter in a coupled PDE system for transient gas flows // Applied Mathematical Modelling. – 2014. – Vol. 39, Issue 2. – P. 682–692. – DOI: 10.1016/j.apm.2014.06.021
10. Hayward A.T.J. Compressibility equations for liquids: a comparative study // British J. of Applied Physics. – 1967. – Vol. 18, Issue 7. – P. 965–977. – DOI: 10.1088/0508-3443/18/7/312
11. Daugherty R.L., Franzini J.B. Fluid mechanics, with engineering applications. – 7th Edition. – McGraw-Hill, 1977. – 564 p.
12. Imitatsionnaya model' identifikatsii prichin i istochnikov debalansa prirodnogo gaza v truboprovodnoy gazotransportnoy sisteme / A.V. Kostandyan, S.S. Gorbunov, A.F. Egorov, V.V. Sidorov // Avtomatizatsiya i informatizatsiya TEK. – 2022. – № 3(584). – S. 37–48. – DOI: 10.33285/2782-604X-2022-3(584)-37-48
13. Identifikatsiya utechek na podzemnykh i nazemnykh truboprovodakh metodom maksimal'nogo pravdopodobiya / S.S. Gorbunov, A.V. Kostandyan, V.V. Sidorov, A.F. Egorov // Avtomatizatsiya i informatizatsiya TEK. – 2023. – № 4(597). – S. 46–53. – DOI: 10.33285/2782-604X-2023-4(597)-46-53