Top.Mail.Ru

Scientific and technical journal

«Automation and Informatization of the fuel and energy complex»

ISSN 0132-2222

Practical implementation of using neural network models for modeling complex large-scale gas transportation systems

UDC: 681.5:622.279
DOI: -

Authors:

KISLENKO NIKOLAY A.1,2,
PANKRATOV SERGEY N.1,
DEDKOVA VALENTINA V.1,
BELINSKY ALEXANDER V.2,
GORLOV DMITRY V.2,
KAZAK ALEXANDER S.2

1 Gazprom, St. Petersburg, Russia
2 NIIgazekonomika, Moscow, Russia

Keywords: systems analysis, gas transportation systems, neural network models

Annotation:

The authors of the article propose a developed and tested approach to modeling non-stationary modes of operation of complex gas transportation systems (GTS) using a combination of physical neural network models of gas transportation. The implementation of this methodology is based on three interconnected modules: a balance-coordinating module for calculating flow dynamics to ensure target balance indicators and gas reserves of large fragments; neural network module for calculating the operating parameters of a "large fragment"; hybrid module for operating modes of complex fragments based on a combination of traditional physical models and machine learning methods. The possibility of using these modules in the iterative process of modeling a gas transportation system is shown, taking into account the transfer of calculation results between individual software blocks.

Bibliography:

1. Metodika rascheta techeniya prirodnogo gaza po trube v programmnom komplekse modelirovaniya gazotransportnykh sistem "Volna" / A.A. Vorob'ev, A.A. Kalinin, G.V. Kaspiev [i dr.] // Mat. modelirovanie. – 2014. – T. 26, № 7. – S. 87–96.
2. Tsybul'nik V.N., Rubel' V.V. Kompleks modelirovaniya i optimizatsii gazotransportnykh sistem "ASTRA" // Gazovaya prom-st'. – 2006. – № 1. – S. 27–29.
3. Svidetel'stvo o gos. registratsii programmy dlya EVM 2014610711 Ros. Federatsiya. Programmnyy kompleks "Agat-KTs". Programmno-vychislitel'nyy kompleks rascheta rezhimov raboty kompressornykh tsekhov / M.G. Anuchin, S.V. Gagarin, A.N. Kuznetsov [i dr.]; pravoobladateli FGUP "RFYaTs – VNIITF im. akad. E.I. Zababakhina", OOO "Gazprom transgaz Ukhta". – № 2013660627; zayavl. 19.11.2013; opubl. 20.02.2014.
4. Svidetel'stvo o gos. registratsii programmy dlya EVM 2015617924 Ros. Federatsiya. PVK "Vesta-KS" / S.A. Sardanashvili, S.K. Mitichkin, D.G. Leonov [i dr.]; pravoobladatel' OOO Firma "INGOYL". – № 2015613212; zayavl. 21.04.2015; opubl. 20.08.2015.
5. Svidetel'stvo o gos. registratsii programmy dlya EVM 2008615715 Ros. Federatsiya. Programmno-vychislitel'nyy kompleks po periodicheskomu analizu i planirovaniyu statsionarnykh rezhimov gazotransportnykh sistem gazotransportnykh obshchestv s vedeniem retrospektivnykh baz dannykh i obmenom rezul'tatami mezhdu urovnyami upravleniya "Astra-gaz" (PVK "Astra-gaz") / Pravoobladatel' OAO "Gazprom". – Zayavl. 03.10.2008; opubl. 28.11.2008.
6. Ot prostogo k slozhnomu: ierarkhicheskiy podkhod k raschetam magistral'nykh gazoprovodov kak slozhnykh sistem / A.S. Kazak, N.A. Kislenko, A.M. Chionov [i dr.]; pod obshch. red. A.S. Kazaka. – M.: NIIgazekonomika, 2021. – 320 s.
7. Integratsiya neyrosetevykh modeley i ekspertnykh znaniy dlya rannego vyyavleniya neispravnostey v rabote gazoperekachivayushchikh agregatov / A.V. Oleynikov, R.A. Shakirov, A.S. Kazak, N.A. Borodulya // Avtomatizatsiya i informatizatsiya TEK. – 2023. – № 10(603). – S. 5–16. – DOI: 10.33285/2782-604X-2023-10(603)-5-16
8. Kazak A.S., Oleynikov A.V. Primenenie metodov sistemnogo analiza dlya postroeniya tsifrovykh dvoynikov fragmentov gazotransportnykh sistem na osnove neyrosetevogo modelirovaniya (osnovnye polozheniya metodologii analiza i sinteza) // Avtomatizatsiya i informatizatsiya TEK. – 2024. – № 1(606). – S. 5–12.
9. Issledovanie tselesoobraznosti neyrosetevogo modelirovaniya rezhimov raboty kompressornykh stantsiy / A.V. Oleynikov, A.S. Kazak, A.V. Belinskiy [i dr.] // Avtomatizatsiya i informatizatsiya TEK. – 2024. – № 2(607). – S. 10–19.
10. O novom metode tsifrovogo modelirovaniya nestatsionarnykh rezhimov techeniya gaza v magistral'nykh gazoprovodakh s primeneniem neyronnykh operatorov / A.V. Belinskiy, D.V. Gorlov, I.A. Pyatyshev, A.E. Titov // Gazovaya prom-st'. – 2024. – № 5(865). – S. 54–66.
11. Sardanashvili S.A. Raschetnye metody i algoritmy (truboprovodnyy transport gaza). – M.: Izd-vo "Neft' i gaz" RGU nefti i gaza im. I.M. Gubkina, 2005. – 577 s.
12. Analiz primenimosti razlichnykh metodov mashinnogo obucheniya dlya prognozirovaniya pochasovogo gazopotrebleniya v razreze gazotransportnykh obshchestv / S.N. Pankratov, A.S. Kazak, A.N. Lobanov, D.V. Gorlov // Avtomatizatsiya i informatizatsiya TEK. – 2023. – № 6(599). – S. 5–14. – DOI: 10.33285/2782-604X-2023-6(599)-5-14
13. Sukharev M.G., Samoylov R.V. Analiz i upravlenie statsionarnymi i nestatsionarnymi rezhimami transporta gaza: monogr. – M.: Izdat. tsentr RGU nefti i gaza im. I.M. Gubkina, 2016. – 397 s.
14. Sukharev M.G., Kosova K.O. Metod identifikatsii parametrov sistem gazosnabzheniya pri nestatsionarnykh rezhimakh techeniya gaza // Avtomatika i telemekhanika. – 2017. – № 5. – S. 141–151.
15. Sukharev M.G., Popov R.V. Novaya metodika modelirovaniya nestatsionarnykh techeniy gaza v sistemakh gazosnabzheniya // Izv. RAN. Energetika. – 2015. – № 2. – S. 150–159.
16. Evdokimov A.G., Tevyashev A.D. Operativnoe upravlenie potokoraspredeleniem v inzhenernykh setyakh. – Khar'kov: Vishcha shk., 1980. – 144 s.
17. Seleznev V.E., Aleshin V.V., Klishin G.S. Metody i tekhnologii chislennogo modelirovaniya gazoprovodnykh sistem. – M.: Editorial URSS, 2002. – 448 s.
18. Truboprovodnye sistemy energetiki. Razvitie teorii i metodov matematicheskogo modelirovaniya i optimizatsii / V.K. Aver'yanov, N.N. Novitskiy, M.G. Sukharev [i dr.]; otv. red. N.N. Novitskiy. – Novosibirsk: Nauka, 2008. – 312 s.
19. Samarskiy A.A., Popov Yu.P. Raznostnye metody resheniya zadach gazovoy dinamiki. – M.: Nauka, 1992. – 424 s.
20. Truboprovodnye sistemy energetiki: matematicheskoe modelirovanie i optimizatsiya / N.N. Novitskiy, A.D. Sukharev, A.D. Tevyashev [i dr.]. – Novosibirsk: Nauka, 2010. – 419 s.