Top.Mail.Ru

Scientific and technical journal

«Automation and Informatization of the fuel and energy complex»

ISSN 0132-2222

Autonomous landing system for an unmanned aerial vehicle of multirotor type using vision technology

UDC: 629.7.021
DOI: -

Authors:

MELYUKOV S.A.1,
FOMICHEV A.V.1

1 Moscow Aviation Institute (National Research University), Moscow, Russia

Keywords: unmanned aerial vehicle (UAV), quadcopter, autonomous landing, technical vision, landing platform

Annotation:

The authors of the article address the problem of autonomous landing of a multirotor type unmanned aerial vehicle (UAV) on a static platform using a television camera (TV) mounted on the aircraft. The main objective of the study lies in developing a methodology and control algorithms to enable autonomous landing without using global navigation satellite system (GNSS) signals. A technical vision-based method was chosen to recognize the landing site. A technique was developed to assess a UAV position and orientation relative to the landing site using a TV camera. The results of computer simulations are presented, demonstrating the effectiveness of the proposed approach. Future applications of the methodology in real scenarios are discussed, including enhancing algorithms through integration with inertial navigation system data. This approach ensures reliable and precise landing of the UAV even in the absence of GNSS signals and potential external disturbances, significantly expanding its practical application areas. Additionally, the possibility of using this methodology for landing on moving platforms will be investigated. The methodology can be used for rescue operations, delivery of cargo to remote locations in the fuel and energy complex, such as offshore oil and gas platforms.

Bibliography:

1. Unmanned aerial vehicles applications in future smart cities / N. Mohamed, J. Al-Jaroodi, I. Jawhar [et al.] // Technological Forecasting and Social Change. – 2020. – Vol. 153. – P. 119293. – DOI: 10.1016/j.techfore.2018.05.004
2. Effect of Spoofing on Unmanned Aerial Vehicle using Counterfeited GPS Signal / Seo Seong-Hun, Lee Byung-Hyun, Im Sung-Hyuck, Jee Gyu-In // J. of Positioning, Navigation, and Timing. – 2015. – Vol. 4, Issue 2. – P. 57–65. – DOI: 10.11003/JPNT.2015.4.2.057
3. A simple learning strategy for high-speed quadrocopter multi-flips / S. Lupashin, A. Schöllig, M. Sherback, R. D'Andrea // 2010 IEEE Int. Conf. on Robotics and Automation, Anchorage, AK, USA, May 03–07, 2010. – IEEE, 2010. – P. 1642–1648. – DOI: 10.1109/ROBOT.2010.5509452
4. Unmanned Quadcopter Control Using a Motion Capture System / L.L. Gomes, L. Leal, T.R. Oliveira [et al.] // IEEE Latin America Transactions. – 2016. – Vol. 14, Issue 8. – P. 3606–3613. – DOI: 10.1109/TLA.2016.7786340
5. Olson E. AprilTag: A robust and flexible visual fiducial system // 2011 IEEE Int. Conf. on Robotics and Automation, Shanghai, China, May 09–13, 2011. – IEEE, 2011. – P. 3400–3407. – DOI: 10.1109/ICRA.2011.5979561
6. Kumar A. Vision-less autonomous tracking and landing of a micro aerial vehicle on a slow maneuvering ground moving target using distance sensors // Multimedia Tools and Applications. – 2022. – Vol. 81, Issue 24. – P. 35261–35281. – DOI: 10.1007/s11042-021-11860-6
7. Melyukov S.A., Fomichev A.V. Razrabotka sistemy upravleniya avtonomnoy posadkoy malorazmernogo bespilotnogo letatel'nogo apparata na podvizhnuyu platformu // Aviatsiya i kosmonavtika: tez. dokl. 22-oy Mezhdunar. konf., M., 20–24 noyab. 2023 g. – M.: Pero, 2023. – S. 156–157.
8. Anikaeva A.D., Martyushev D.A. Otsenka potentsiala primeneniya bespilotnykh letatel'nykh apparatov v neftegazovoy otrasli // Nedropol'zovanie. – 2020. – T. 20, № 4. – S. 344–355. – DOI: 10.15593/2712-8008/2020.4.4
9. Petrov A.M., Popov A.N. Razrabotka intellektual'noy sistemy podderzhki prinyatiya resheniy po otsenke sostoyaniya ob"ektov sistemy teplosnabzheniya // Avtomatizatsiya i informatizatsiya TEK. – 2023. – № 6(599). – S. 15–21. – DOI: 10.33285/2782-604X-2023-6(599)-15-21
10. Gol'dzon I.A., Zav'yalov A.P., Lopatin A.S. Aprobatsiya avtomatizirovannoy sistemy tekhnicheskogo diagnostirovaniya gazoprovodov s ispol'zovaniem bespilotnykh letatel'nykh apparatov // Avtomatizatsiya i informatizatsiya TEK. – 2023. – № 3(596). – S. 38–44. – DOI: 10.33285/2782-604X-2023-3(596)-38-44
11. Gen K., Chulin N.A. Algoritmy stabilizatsii dlya avtomaticheskogo upravleniya traektornym dvizheniem kvadrokoptera // Nauka i obrazovanie: nauch. izd. MGTU im. N.E. Baumana. – 2015. – № 5. – S. 218–235. – DOI: 10.7463/0515.0771076
12. Lysukho G.V., Maslennikov A.L. Kvadrokopter: dinamika i upravlenie // Politekhn. molodezh. zhurn. – 2020. – № 5(46). – S. 1. – DOI: 10.18698/2541-8009- 2020-5-604
13. Dynamics modelling and linear control of quadcopter / Wang Pengcheng, Man Zhihong, Cao Zhenwei [et al.] // 2016 Int. Conf. on Advanced Mechatronic Systems (ICAMechS), Melbourne, VIC, Australia, Nov. 30 – Dec. 03, 2016. – IEEE, 2016. – P. 498–503. – DOI: 10.1109/ICAMechS.2016.7813499
14. Niemiec R., Gandhi F. A Comparison Between Quadrotor Flight Configurations // 42nd European Rotorcraft Forum, Lille, France, Sept. 5–8. – 2016.
15. Quadrotor Autonomous Landing on Moving Platform / Wang Pengyu, Wang Chaoqun, Wang Jiankun, Meng Max Qing Hu // Procedia Computer Science. – 2022. – Vol. 209. – P. 40–49. – DOI: 10.1016/j.procs.2022.10.097
16. Bradski G., Kaehler A. Learning OpenCV: Computer vision with the OpenCV library. – 1st edition. – O'Reilly Media, 2008. – 580 p.
17. Zhang Y.J. Camera calibration // 3-D Computer Vision: Principles, Algorithms and Applications. – Singapore: Springer Nature Singapore, 2023. – P. 37–65. – DOI: 10.1007/978-981-19-7580-6_2
18. Galimov M., Fedorenko R., Klimchik A. UAV Positioning Mechanisms in Landing Stations: Classification and Engineering Design Review // Sensors. – 2020. – Vol. 20, Issue 13. – P. 3648. – DOI: 10.3390/s20133648
19. ROS: an open-source Robot Operating System / M. Quigley, K. Conley, B. Gerkey [et al.] // ICRA workshop on open-source software. – 2009. – Vol. 3, Issue 3.2. – P. 5.
20. Multilevel host-compiled simulation framework for ROS-based UAV services using ArduCopter / J. Merino, R. Gomez, H. Posadas, E. Villar // 2021 XXXVI Conf. on Design of Circuits and Integrated Systems (DCIS), Vila do Conde, Portugal, Nov. 24–26, 2021. – IEEE, 2021. – P. 1–6. – DOI: 10.1109/DCIS53048.2021.9666177