Methods of data verification and validation for solving problems of automated process control systems in the oil and gas industry
UDC: 004.511.3:002.261
DOI: -
Authors:
KIZINA I.D.
1,
VEREVKIN A.P.
2
1 Nefteavtomatika, Ufa, Russia
2 Ufa State Technical University, Ufa, Russia
Keywords: information, automated process control systems (APCS), methodological approaches, verification, validation (correction) of unreliable data, measuring channel, models, information processing methods, validation of measurements and information processing algorithms
Annotation:
Diagnostics of the data reliability circulating in the process control system is a pressing problem for all areas of production. Verification and correction (validation) of data is an integral part of modern automated process control systems, which is confirmed by a large number of publications on this topic [2, 3, 6–9, 11, 12]. In particular, for fuel and energy complex facilities, these problems are considered in [7, 8, 15 and 16]. Detection of a complete (or hardware) failure of sensors is a simple task if the sensor output signal has a scale of 4...20 mA. Preventing the consequences of such failures comes down to "freezing" the corresponding variables at the last reliable values with subsequent use of backup or predictive sources of information [4]. Detection of functional failures and inadequacy of models, which is the subject of verification, is a much more complex task. The authors of the article consider methodological approaches to the construction of verification systems, types of models, methods for identifying unreliable information and its verification.
Bibliography:
1. Boks Dzh., Dzhenkins G. Analiz vremennykh ryadov, prognoz i upravlenie: v 2 kn. Kn. 1 / per. s angl. A.L. Levshina; pod red. V.F. Pisarenko. – M.: Mir, 1974. – 406 s.
2. Verevkin A.P. Diagnostika, verifikatsiya i dostoverizatsiya dannykh dlya avtomatizirovannykh sistem upravleniya // Elektron. nauch. zhurn. Neftegazovoe delo. – 2016. – № 3. – S. 239–254. – URL: https://ogbus.ru/files/ogbus/issues/3_2016/ogbus_3_2016_p239-254_VerevkinAP_ru.pdf
3. Verevkin A.P., Murtazin T.M. Iskusstvennyy intellekt v zadachakh modelirovaniya, upravleniya, diagnostiki tekhnologicheskikh protsessov: monogr. – M.; Vologda: Infra-Inzheneriya, 2023. – 232 s.
4. Verevkin A.P., Kiryushin O.V. Avtomatizatsiya tekhnologicheskikh protsessov i proizvodstv v neftepererabotke i neftekhimii: ucheb. posobie. – Ufa: UGNTU, 2005. – 171 s.
5. Podgotovka dannykh dlya postroeniya virtual'nykh analizatorov v zadachakh usovershenstvovannogo upravleniya / A.P. Verevkin, S.V. Denisov, T.M. Murtazin, K.Yu. Ustyuzhanin // Avtomatizatsiya v prom-sti. – 2019. – № 3. – S. 12–17.
6. Gaydamak A.V., Verevkin A.P. Metod statisticheskogo modelirovaniya reaktornykh protsessov ustanovki kataliticheskogo riforminga dlya sistem diagnostiki ispravnosti informatsionno-izmeritel'nykh kanalov // Problemy avtomatizatsii tekhnolog. protsessov dobychi, transp. i pererab. nefti i gaza: sb. nauch. tr. Vseros. nauch.-prakt. internet-konf., Ufa, 18 apr. 2013 g. – Ufa: Izd-vo UGNTU, 2013.
7. Golubyatnikov E.A., Sardanashvili S.A. Problemy modelirovaniya on-line rezhimov sistem gazosnabzheniya // Territoriya Neftegaz. – 2015. – № 4. – S. 32–37.
8. Denisenko V.V. Dinamicheskaya pogreshnost' izmeritel'nykh kanalov ASU TP // Sovremennye tekhnologii avtomatizatsii. – 2011. – № 2. – S. 92–101.
9. Zakharchenko V.E. Kontrol' dostovernosti znacheniy parametrov v ASUTP // Imitatsionnoe modelirovanie. Teoriya i praktika: tr. Tret'ey vseros. nauch.-prakt. konf. po imitatsionnomu modelirovaniyu i ego primeneniyu v nauke i prom-sti (IMMOD-2007), SPb., 17–19 okt. 2007 g.: v 2 t. T. 1. – SPb.: S.-Peterb. in-t informatiki i avtomatizatsii RAN, 2007. – S. 278–286.
10. Klasternyy analiz. – URL: https://docs.exponenta.ru/stats/examples/cluster-analysis.html (data obrashcheniya 13.02.2019).
11. Korchinskiy V.V., Bezzebenko V.V., Bovtryuk M.A. Metod otsenki kachestva kanala v usloviyakh vozdeystviya prednamerennoy pomekhi // Vimiryuval'na ta obchislyuval'na tekhnika v tekhnologichnikh protsessakh. – 2013. – № 2. – S. 192–194.
12. Kul'ba V.V., Kovalevskiy S.S., Shelkov A.B. Dostovernost' i sokhrannost' informatsii v ASU. – 2-e izd. – M.: SINTEG, 2003. – 496 s.
13. Mozgalevskiy A.V., Kalyavin V.P. Sistemy diagnostirovaniya sudovogo oborudovaniya. – L.: Sudostroenie, 1987. – 224 s.
14. Orlova I.V., Polovnikov V.A. Ekonomiko-matematicheskie metody i modeli: komp'yuternoe modelirovanie: ucheb. posobie. – M.: Vuzovskiy ucheb., 2007. – 365 s.
15. Sardanashvili S.A., Golubyatnikov E.A. Primenenie metodov povysheniya dostovernosti onlayn-dannykh i rezul'tatov modelirovaniya rezhimov promyslovykh, magistral'nykh, gazoraspredelitel'nykh truboprovodnykh sistem // Territoriya Neftegaz. – 2018. – № 9. – S. 24–34.
16. Analiz balansa potokov zhidkosti v inzhenernykh setyakh neftegazodobyvayushchego predpriyatiya: metod. materialy / M.A. Slepyan, Yu.I. Zozulya, A.K. Muravskiy, N.M. Sibagatullin. – Ufa: Monografiya, 2002. – 119 s.
17. Nekipelov N. Fil'tratsiya dannykh v sistemakh analiza i prognoza. – URL: https://basegroup.ru/community/articles/data-filtration (data obrashcheniya 03.11.2019).
18. Coleman B., Babu J. Techniques of Model-Based Control. – Prentice Hall PTR, 2002. – 704 p.