Top.Mail.Ru

Scientific and technical journal

«Automation and Informatization of the fuel and energy complex»

ISSN 0132-2222

Functional capabilities of generative models and assessment of their applicability when solving problems of intelligent decision-making support means for objects of Unified Gas Supply System

UDC: 004.048
DOI: -

Authors:

LEONOV D.G.1,
STEPANKINA O.A.1,
TELEGOVA K.N.1

1 National University of Oil and Gas "Gubkin University", Moscow, Russia

Keywords: generative networks, machine learning, artificial intelligence, integration, automation

Annotation:

The authors of the article consider generative networks from the point of view of their use as automation universal tool. Generative models are capable of synthesizing data that simulate statistical characteristics of original data set, thus making them a powerful instrument of working with any type of data. The prospects of generative networks application in decision support means for UGSS objects as well as main architectural solutions providing their integration are discussed. The practical application of generative networks in automated setting processes of inter-systems integration of the systems used for calculation of equipment residual operational life-time and resource planning is considered. Correct use of this instrument can lead to a significant improvement of the processes of the systems interaction, which is especially important for the further development of automation and integration in high-tech industries.

Bibliography:

1. Malyshev I.O. Obzor sovremennykh generativnykh neyrosetey: otechestvennaya i zarubezhnaya praktika // Mezhdunar. zhurn. gumanitarnykh i estestvennykh nauk. – 2024. – № 1-2(88). – S. 168–171. – DOI: 10.24412/2500-1000-2024-1-2-168-171
2. Ayrapetov A.E., Kovalenko A.A. Vidy generativno-sostyazatel'nykh setey // Dostizheniya nauki i obrazovaniya. – 2019. – № 4(45). – S. 7–13.
3. Foster D. Generativnoe glubokoe obuchenie. Tvorcheskiy potentsial neyronnykh setey. – SPb.: Piter, 2021. – 352 s.
4. Sardanashvili S.A., Shvechkov V.A. Primenenie tekhnologiy iskusstvennogo intellekta v razrabotke innovatsionnoy otechestvennoy sistemy podderzhki prinyatiya dispetcherskikh resheniy v oblasti modelirovaniya, planirovaniya i upravleniya mezhregional'nymi potokami gaza v ESG // Avtomatizatsiya, telemekhanizatsiya i svyaz' v neftyanoy prom-sti. – 2019. – № 8(553). – S. 31–37. – DOI: 10.33285/0132-2222-2019-8(553)-31-37
5. Issledovanie tselesoobraznosti neyrosetevogo modelirovaniya rezhimov raboty kompressornykh stantsiy / A.V. Oleynikov, A.S. Kazak, A.V. Belinskiy [i dr.] // Avtomatizatsiya i informatizatsiya TEK. – 2024. – № 2(607). – S. 10–19.
6. Arifullin A., Markin V. Perspektivy primeneniya generativnogo iskusstvennogo intellekta v neftegazovoy otrasli // Energeticheskaya politika. – 2024. – № 5(196). – S. 50–59. – DOI: 10.46920/2409-5516_2024_5196_50
7. Leonov D.G., Papilina T.M., Stepankina O.A. Razvitie arkhitektury raschetno-integratsionnoy platformy postroeniya tsifrovykh dvoynikov i intellektual'nykh sredstv podderzhki prinyatiya resheniy dlya ob"ektov ESG // Avtomatizatsiya i informatizatsiya TEK. – 2023. – № 9(602). – S. 6–14. – DOI: 10.33285/2782-604X-2023-9(602)-6-14
8. Morozova O.A. Integratsiya korporativnykh informatsionnykh sistem: ucheb. posobie. – M.: Finansovyy un-t, 2014. – 140 s.
9. Abramenkova K.N., Leonov D.G. Metodologiya planirovaniya resursov predpriyatiya na osnove prognozirovaniya funktsional'nogo otkaza oborudovaniya // Inform. tekhnologii v modelirovanii i upravlenii: podkhody, metody, resheniya: materialy VI Vseros. nauch. konf. s mezhdunar. uchastiem, Tol'yatti, 18–20 apr. 2023 g. – Tol'yatti: Tol'yattinskiy gos. un-t, 2023. – S. 144–149.
10. Leonov D.G., Telegova K.N. Primenenie mashinnogo obucheniya v zadachakh avtomatizatsii podgotovki dannykh v protsesse realizatsii sistemnoy integratsii // Avtomatizatsiya i informatizatsiya TEK. – 2024. – № 10(615). – S. 24–30.