Top.Mail.Ru

Scientific and technical journal

«Automation and Informatization of the fuel and energy complex»

ISSN 0132-2222

Analysis of Brayton cycle energy efficiency during regasification of liquified natural gas

UDC: 536.423:621.1.018.4
DOI: -

Authors:

NALETOV VLADISLAV A.1,
TOKAREV VLADISLAV A.1,
GLEBOV MIKHAIL B.1,
NALETOV ALEKSEY YU.1

1 Mendeleev Russian Chemical-Technology University, Moscow, Russia

Keywords: liquefied natural gas (LNG), regasification, Brayton cycle, cogeneration, modeling, optimization, specific work, net present value (NPV), payback period

Annotation:

The authors of the article investigate the main issues of developing energy-saving technical solutions for the process of liquefied natural gas (LNG) regasification based on the use of Brayton thermodynamic cycle on various working fluids: nitrogen, carbon dioxide – in normal and supercritical state. Technological schemes simulation was carried out in ChemCad. Specific work of the net cycle per unit of LNG consumption was chosen as a criterion of the optimal technical solution, which was determined on the basis of the unit power balance in the whole. Varying parameters when choosing the optimal solution were: working fluid temperature after LNG regasification, compressor outlet pressure, Brayton cycle turbine outlet pressure. In the course of computing experiments, optimal Brayton cycle operational parameters wore obtained on different working fluids. It is shown that a nitrogen-based Brayton cycle technique of LNG rectification is preferable due to its specific work indicator. A preliminary economic analysis was done to determine possible commercial applicability for the developed solution. To assess the commercial attractiveness of the developed technical solution a preliminary economic analysis was carried out to estimate NPV and payback period. Total investments volume was assumed to be equal to the capital costs for the Brayton cycle equipment. The calculations showed that investments payback period for a LNG regasification terminal with a productivity rate of 5 bln t/year made 3 years.

Bibliography:

1. Ritz R.A. A Strategic Perspective on Competition between Pipeline Gas and LNG // The Energy J. – 2019. – Vol. 40, Issue 5. – P. 195–220. – DOI: 10.5547/01956574.40.5.rrit
2. Energeticheskaya strategiya Rossiyskoy Federatsii na period do 2035 goda: utv. rasporyazheniem Pravitel'stva RF ot 09 iyunya 2020 g. № 1523-r.
3. Safarov A.E. Regazifikatsiya SPG // Transp. na al'ternativnom toplive. – 2019. – № 5(71). – S. 52–57.
4. Fal'man A.G., Ageyskiy D.E. Perspektivy regazifikatsii SPG // Vestn. Mezhdunar. akad. kholoda. – 2015. – № 2. – S. 46–49.
5. Frutschi H.U. Closed-Cycle Gas Turbines. Operating Experience and Future Potential. – New York: ASME Press, 2005. – 283 p.
6. Pat. 2562683 Ros. Federatsiya, MPK F17C 7/04, F17C 9/04. Regazifikatsiya szhizhennogo prirodnogo gaza po tsiklu Braytona / M.A. Gonsales Salazar, M. Finkenrat, I. Ekshtayn, K.S.K. Belloni; patentoobladatel' Dzheneral Elektrik Kompani. – № 2011121290/06; zayavl. 27.05.2011; opubl. 10.09.2015, Byul. № 25.
7. Krey G. Utilization of the Cold by LNG Vaporization with Closed-Cycle Gas Turbine // J. of Engineering for Power. – 1980. – Vol. 102, Issue 2. – P. 225–230. – DOI: 10.1115/1.3230241
8. Naletov V.A., Glebov M.B., Potemkina T.A. Informatsionnye tekhnologii v zadachakh povysheniya rentabel'nosti protsessa transportirovki prirodnogo gaza // Avtomatizatsiya i informatizatsiya TEK. – 2022. – № 3(584). – S. 12–17. – DOI: 10.33285/2782-604X-2022-3(584)-12-17
9. Lee B.I., Kesler M.G. A generalized thermodynamic correlation based on three-parameter corresponding states // AIChE J. – 1975. – Vol. 21, No. 3. – P. 510–527. – DOI: 10.1002/AIC.690210313
10. Altunin V.V. Teplofizicheskie svoystva dvuokisi ugleroda. – M.: Izd-vo standartov, 1975. – 546 s.
11. Parameters for cost estimation in shell and tube heat exchangers network synthesis: A systematic literature review on 30 years of research / S. Lemos Cotrim, A. de Araujo Machado, G.C.L. Leal [et al] // Applied Thermal Engineering. – 2022. – Vol. 213. – P. 118801. – DOI: 10.1016/j.applthermaleng.2022.118801