Empirical models for automated process control systems: data clustering and verification, models robustness ensuring
UDC: 004.511.3
DOI: -
Authors:
VEREVKIN ALEXANDER P.
1,
MURTAZIN TIMUR M.
1
1 Ufa State Petroleum Technological University, Ufa, Russia
Keywords: reliability, data, sensitivity, regression, verification, situational modeling, non-stationary state, time series
Annotation:
The solution of problems of improved process control and safety at oil refining and petrochemical enterprises is based on the widespread use of models of information preparation and extraction, which are usually formed by processing statistical (empirical) data in the form of time series (TS). The problems of building of technological objects models, based on TS, are associated with the non-stationary of the object's characteristics as well as the nonlinearity of the relationships between the parameters. The prospects for solving the problems of modeling non-stationary objects lie in the way of situational modeling, when the TS is clustered into quasi-stationary fragments, each of which corresponds to a situational model. An important problem of models building is to ensure "roughness" (robustness, stability) to errors when determining the coefficients and measuring the input parameters of the models with high forecasting accuracy required for solving problems of control, diagnostics and data verification. The authors of the article consider approaches to analyzing the "roughness" of regression models for non-stationary objects and obtaining stable models based on TS processing.
Bibliography:
1. Boks Dzh., Dzhenkins G. Analiz vremennykh ryadov, prognoz i upravlenie: v 2 kn. Kn. 1 / per. s angl. pod red. V.F. Pisarenko. – M.: Mir, 1974. – 406 s.
2. Verevkin A.P., Murtazin T.M. Iskusstvennyy intellekt v zadachakh modelirovaniya, upravleniya, diagnostiki technologicheskikh protsessov: monogr. – M.; Vologda: Infra-Inzheneriya, 2023. – 232 s.
3. Verevkin A.P., Murtazin T.M. Sistemotekhnika prinyatiya resheniy v zadachakh upravleniya i diagnostiki technologicheskikh protsessov // Avtomatizatsiya v prom-sti. – 2024. – № 7. – S. 38–45. – DOI: 10.25728/avtprom.2024.07.07
4. Kadlec P., Gabrys B., Strandt S. Data-Driven Soft Sensors in the Process Industry // Computers and Chemical Engineering. – 2009. – Vol. 33, Issue 4. – P. 795–814. – DOI: 10.1016/j.compchemeng.2008.12.012
5. Soft Sensors for Monitoring and Control of Industrial Processes / L. Fortuna, S. Graziani, A. Rizzo, M.G. Xibilia. – London: Springer-Verlag, 2007. – XVIII, 271 p. – DOI: 10.1007/978-1-84628-480-9
6. Sardanashvili S.A., Golubyatnikov E.A. Primenenie metodov povysheniya dostovernosti onlayn-dannykh i rezul'tatov modelirovaniya rezhimov promyslovykh, magistral'nykh, gazoraspredelitel'nykh truboprovodnykh sistem // Territoriya Neftegaz. – 2018. – № 9. – S. 24–34.
7. Zakharchenko V.E. Kontrol' dostovernosti znacheniy parametrov v ASUTP // Imitatsionnoe modelirovanie. Teoriya i praktika (IMMOD): tr. Tret'ey vseros. nauch.-prakt. konf. po imitatsionnomu modelirovaniyu i ego primeneniyu v nauke i prom-sti, SPb., 17–19 okt. 2007 g. Sektsiya 2. Sredstva avtomatizatsii i vizualizatsii imitatsionnogo modelirovaniya. – SPb.: S.-Peterb. in-t informatiki i avtomatizatsii RAN, 2007. – S. 278–286.
8. Analiz balansa potokov zhidkosti v inzhenernykh setyakh neftegazodobyvayushchego predpriyatiya / M.A. Slepyan, Yu.I. Zozulya, A.K. Muravskiy, N.M. Sibagatullin. – Ufa: Monografiya, 2002. – 119 s.
9. Kul'ba V.V., Kovalevskiy S.S., Shelkov A.B. Dostovernost' i sokhrannost' informatsii v ASU. – M.: SINTEG, 2003. – 496 s.
10. Coleman B., Babu J. Techniques of Model-Based Control. – Prentice Hall PTR, 2002. – 704 p.
11. Podgotovka dannykh dlya postroeniya virtual'nykh analizatorov v zadachakh usovershenstvovannogo upravleniya / A.P. Verevkin, S.V. Denisov, T.M. Murtazin, K.Yu. Ustyuzhanin // Avtomatizatsiya v prom-sti. – 2019. – № 3. – S. 12–17.
12. Orlova I.V., Polovnikov V.A. Ekonomiko-matematicheskie metody i modeli: komp'yuternoe modelirovanie: ucheb. posobie. – 3-e izd., pererab. i dop. – M.: Vuzovskiy uchebnik: INFRA-M, 2014. – 389 s.
13. Golubyatnikov E.A., Sardanashvili S.A. Problemy modelirovaniya on-line rezhimov sistem gazosnabzheniya // Territoriya Neftegaz. – 2015. – № 4. – S. 32–37.
14. Pospelov D.A. Situatsionnoe upravlenie: teoriya i praktika. – M.: Nauka, 1986. – 288 s.
15. Klasternyy analiz. – URL: https://docs.exponenta.ru/stats/cluster-analysis-example.html (data obrashcheniya 13.02.2019).
16. Verevkin A.P., Murtazin T.M. Modeli v zadachakh razrabotki avtomatizirovannykh sistem upravleniya tekhnologicheskimi ob"ektami. – M.; Vologda: Infra-Inzheneriya, 2025. – 196 s.
17. Kizina I.D., Verevkin A.P. Metody verifikatsii i dostoverizatsii dannykh dlya resheniya zadach v avtomatizirovannykh sistemakh upravleniya tekhnologicheskimi protsessami neftegazovoy otrasli // Avtomatizatsiya i informatizatsiya TEK. – 2025. – № 1(618). – S. 42–47.