Recurrent relationships for modeling the dynamics of heat transfer processes in pipelines of heating networks
UDC: [62-932.2+51-74]:621.6
DOI: -
Authors:
GREBNEVA OKSANA A.
1,
NOVITSKY NIKOLAY N.
1
1 Melentiev Energy Systems Institute SB RAS, Irkutsk, Russia
Keywords: mathematical modeling, water heat networks, dynamic modes, heat exchange
Annotation:
The authors of the article consider obtaining and analyzing the applicability of final expressions for describing heat transfer processes in heat network (HN) pipelines for prediction and filtration problems. Various variants of equations, including integral equations of energy and momentum conservation, are considered. Justification of their use as well as their simplification with account for real conditions of operation of heat networks, physical properties of heat carrier (water) and heat exchange processes is given. Numerical studies have been carried out, the results of which have shown the potential possibility of using the simplified equation when modeling dynamic temperature states of water heat networks. On the basis of the proposed equation, a recurrence relation has been obtained, linking the value of the heat carrier temperature at the end of the pipeline at the current moment of time with the preceding one, which can be used as a basis for the solution of temperature forecasting problems for the organization of tracking (monitoring) processes.
Bibliography:
1. Grebneva O., Novitsky N. Modern Experience in Dynamic States Simulation of Pipeline Systems and the Possibility of its Application to Solving Identification Problems // Mathematical Models and Methods of the Analysis and Optimal Synthesis of the Developing Pipeline and Hydraulic Systems 2020: Proc. of the XVII Meet. Conf., Online, June 22–28, 2020. – Vol. 219. – ID 03001. – DOI: 10.1051/e3sconf/202021903001
2. Gabrielaitiene I., Bohm B., Sunden B. Modelling temperature dynamics of a district heating system in Naestved, Denmark. A case study // Energy Conversion and Management. – 2007. – Vol. 48, Issue 1. – P. 78–86. – DOI: 10.1016/j.enconman.2006.05.011
3. Function method for dynamic temperature simulation of district heating network / Zheng Jinfu, Zhou Zhigang, Zhao Jianing, Wang Jinda // Applied Thermal Engineering. – 2017. – Vol. 123. – P. 682–688. – DOI: 10.1016/j.applthermaleng.2017.05.083
4. Chertkov M., Novitsky N.N. Thermal Transients in District Heating Systems // Energy. – 2019. – Vol. 184. – P. 22–33. – DOI: 10.1016/j.energy.2018.01.049
5. Neizotermicheskoe techenie gaza v trubakh / O.F. Vasil'ev, E.A. Bondarev, A.F. Voevodin, M.A. Kanibolotskiy; pod red. O.F. Vasil'eva. – Novosibirsk: Nauka, 1978. – 127 s.
6. Bondarev E.A., Voevodin A.F., Nikiforovskaya V.S. Metody identifikatsii matematicheskikh modeley gidravliki. – Yakutsk: Izdat. dom Sev.-Vost. feder. un-ta im. M.K. Ammosova, 2014. – 187 s.
7. Mikheev M.A., Mikheeva I.M. Osnovy teploperedachi. – Izd. 2-e, ster. – M.: Energiya, 1977. – 344 s.
8. Tikhomirov K.V., Sergeenko E.S. Teplotekhnika, teplogazosnabzhenie i ventilyatsiya: ucheb. dlya vuzov. – 4-e izd., pererab. i dop. – M.: Stroyizdat, 1991. – 480 s.
9. Chionov A.M. Instrumenty komp'yuternogo modelirovaniya termogidrodinamicheskikh rezhimov potoka v mnogosloyno izolirovannykh podvodnykh gazoprovodakh vysokogo davleniya: avtoref. dis. … kand. tekhn. nauk: 05.13.18. – M., 2016. – 16 s.
10. Volkov A.I., Zharskiy I.M. Bol'shoy khimicheskiy spravochnik. – Minsk: Sovrem. shk., 2005. – 608 s.
11. Atavin A.A., Tarasevich V.V. Matematicheskoe modelirovanie nestatsionarnykh protsessov v truboprovodnykh sistemakh // Gidravlicheskie tsepi. Razvitie teorii i prilozheniya / N.N. Novitskiy, E.V. Sennova, M.G. Sukharev [i dr.]; In-t sistem energetiki im. L.A. Melent'eva SO RAN; pod red. A.Z. Gamma. – Novosibirsk: Nauka, 2000. – S. 16–30.
12. Gamayurova V.S., Rzhechitskaya L.E. Pishchevaya khimiya: ucheb. dlya studentov vuzov: elektron. izd. setevogo rasprostraneniya. – M.: KDU; Dobrosvet, 2018.
13. Grebneva O.A., Novitskiy N.N. Zadacha monitoringa rezhimov raboty teplovykh setey: issledovanie i formalizatsiya // Avtomatizatsiya i informatizatsiya TEK. – 2023. – № 8(601). – S. 66–73. – DOI: 10.33285/2782-604X-2023-8(601)-66-73
14. Novitskiy N.N. Elementy teorii i metodov setevoy identifikatsii truboprovodnykh sistem // Izv. RAN. Energetika. – 2000. – № 6. – S. 87–97.
15. Novitskiy N.N. Identifitsiruemost' truboprovodnykh sistem // Sistemnye issledovaniya v energetike: retrospektiva nauchnykh napravleniy SEI–ISEM / pod obshchey red. N.I. Voropaya. – Novosibirsk: Nauka, 2010. – S. 279–291.
16. Brammer K., Ziffling G. Fil'tr Kalmana-B'yusi. Determinirovannoe nablyudenie i stokhasticheskaya fil'tratsiya: per. s nem. – M.: Nauka, 1982. – 200 s.
17. Prognoz pogody v Irkutske na sentyabr' 2025 goda. – URL: https://pogoda.mail.ru/prognoz/irkutsk/september-2025/ (data obrashcheniya 08.09.2024).
18. Pravila tekhnicheskoy ekspluatatsii elektricheskikh stantsiy i setey Rossiyskoy Federatsii: utv. prikazom Minenergo Rossii № 229 ot 19.06.2003. – URL: https://normativ.kontur.ru/document?moduleId=1&documentId=330897