Научно-технический журнал

«Onshore and offshore oil and gas well construction»

ISSN 0130-3872

Onshore and offshore oil and gas well construction
Evaluation of the applicability of an alternative design of a drill bit cone movable joint

UDC: 622.24.051
DOI: 10.33285/0130-3872-2023-9(369)-41-45

Authors:

SAMARIN MIKHAIL A.1,
KLEPIKOV DMITRY A.1,
SHOSTAK NIKITA A.1,
BALAEV ETIBAR YU.1

1 Kuban State Technological University, Krasnodar, Russia

Keywords: thermo-elastic phase transformations, shape memory effect, pseudo-elasticity/super-elasticity, drill bitcone, drilling equipment, welded joints

Annotation:

The designs of rock cutting tools are being improved and complicated to increase the reliability resource and operational service life. The most applicable cone bits are a complex structure, the joints of which are constantly subjected to various types of loading. One of the main problems of ensuring the design reliability is associated with the use of a weld to fix the locking pin, which is one of the main connecting elements of drill bitcones, providing the possibility of a movable connection of the drill bit cone on the drill bit leg axle. In addition to general structural flaws, the welded joint is extremely poorly perceived by dynamic loads and vibrations, which are directly related to the rock drilling process. The solution of the proposed problem is supposed to be the use of an alloy with thermo-elastic phase transformations as the material of the locking pin with a change of the mounting method, which makes it possible to replace the welded joint fixation by the geometry fixation. It is achieved by applying the shape memory effect inherent in this class of smart materials. To confirm the proposed design effectiveness, a comparative strength analysis was carried out, which proved the advantages and suitability for use of the developed locking pin and mounting method.

Bibliography:

1. Basarygin Yu.M., Bulatov A.I., Proselkov Yu.M., Burenie neftyanykh i gazovykh skvazhin. – M.: Nedra-Biznestsentr, 2002. – 632 s.
2. Volik D.A. Burovye porodorazrushayushchie instrumenty. – M.: RGU nefti i gaza (NIU) im. I.M. Gubkina, 2014. – 94 s.
3. Paliy P.A., Korneev K.E. Burovye dolota: sprav. – M.: Nedra, 1971. – 446 s.
4. James R.D., Hane K.F. Martensitic transformations and shape-memory materials // Acta Materialia. – 2000. – Vol. 48, Issue 1. – P. 197–222. – DOI: 10.1016/S1359-6454(99)00295-5
5. Culshaw B. Smart structures and materials. – Norwood, Massachusetts: Artech House, 1996. – 207 p.
6. Pat. na polez. model' 201586 Ros. Federatsiya, MPK E21B 10/20, E21B 10/22. Burovoe sharoshechnoe doloto / D.A. Ruban, T.A. Cherkesov, E.Yu. Balaev; patentoobladatel' FGBOU VO "KubGTU". – № 2020114063; zayavl. 03.04.2020; opubl. 22.12.2020, Byul. № 36.
7. Use of materials with shape memory effect to improve the performance properties of parts of drill string / D.A. Ruban, T.A. Cherkesov, E.Y. Balaev, D.V. Gerasimov // IOP Conf. Series: Materials Science and Engineering. – 2019. – Vol. 775. Int. Conf. on Civil, Architectural and Environmental Sciences and Technologies (CAEST 2019), Samara, Nov. 19, 2019. – Samara: Institute of Physics Publishing, 2020. – P. 012122. – DOI: 10.1088/1757-899X/775/1/012122
8. Engineering aspects of shape memory alloys / T.W. Duerig, K.N. Melton, D. Stockel, C.M. Waymanb. – London: Butterworth-Heinemann, 1990. – 499 p.
9. Duerig T.W., Pelton A.R., Bhattacharya K. The Measurement and Interpretation of Transformation Temperatures in Nitinol // Shape Memory and Superelasticity. – 2017. – Vol. 3, Issue 4. – P. 485–498. – DOI: 10.1007/s40830-017-0133-0
10. Logacheva A.I. Kompleksnaya tekhnologiya izgotovleniya tonkostennykh elementov metodom poroshkovoy metallurgii dlya proizvodstva detaley iz konstruktsionnykh i funktsional'nykh splavov na osnove titana i nikelya dlya izdeliy raketno-kosmicheskoy tekhniki: avtoref. dis. … d-ra tekhn. nauk: 05.16.06. – Korolev, 2016. – 60 s.
11. Tsel'nokorpusnaya diskovaya zaporno-reguliruyushchaya armatura s sedlom, vypolnennym iz splava s effektom pamyati formy / M.A. Samarin, A.V. D'yachenko, E.Yu. Balaev, N.A. Shostak // Tsvetnye metally. – 2022. – № 6. – S. 71–80. – DOI: 10.17580/tsm.2022.06.09
12. Lonn M.K., Metcalf J.M., Choules B.D. In Vivo and In Vitro Nitinol Corrosion Properties // Shape Memory and Superelasticity. – 2015. – Vol. 1, Issue 3. – P. 328–338. – DOI: 10.1007/s40830-015-0036-x
13. Lina Yan, Yong Liu. Wear Behavior of Austenitic NiTi Shape Memory Alloy // Shape Memory and Superelasticity. – 2015. – Vol. 1, Issue 1. – P. 58–68. – DOI: 10.1007/s40830-015-0008-1
14. Lina Yan, Yong Liu. Effect of Deformation Mode on the Wear Behavior of NiTi Shape Memory // Shape Memory and Superelasticity. – 2016. – Vol. 2, Issue 2. – P. 204–217. – DOI: 10.1007/s40830-016-0070-3
15. Mahtabi M.J., Shamsaei N. Fatigue Modeling for Superelastic NiTi Considering Cyclic Deformation and Load Ratio Effects // Shape Memory and Superelasticity. – 2017. – Vol. 3, Issue 3. – P. 250–263. – DOI: 10.1007/s40830-017-0115-2
16. Fatigue Crack Growth Fundamentals in Shape Memory Alloys / Yan Wu, A. Ojha, L. Patriarca, H. Sehitoglu // Shape Memory and Superelasticity. – 2015. – Vol. 1, Issue 1. – P. 18–40. – DOI: 10.1007/s40830-015-0005-4