Scientific and technical journal

«Equipment and technologies for oil and gas complex»

ISSN 1999-6934

FORMATION FEATURES OF METHANE MASS TRANSFER IN THE INTERBEDDED ROCKS

UDC: 622.33
DOI: 10.33285/1999-6934-2021-3(123)-71-78

Authors:

TROFIMOV VITALY ALEKSANDROVICH1,
FILIPPOV YURY ALEKSEEVICH1

1 Institute of Comprehensive Exploitation of Mineral Resources Russian Academy of Sciences, Moscow, Russian Federation

Keywords: coal seam; methane; filtration; permeability; mass transfer; coal massif; interlayer; stress-strain state; geo-mechanical numerical models; filtration numerical models

Annotation:

Over the years of underground mining of coal deposits, it has been revealed that methane is released from the enclosing rocks into the worked-out area, often in large quantities both in a quasi-static and dynamic form under various technological schemes and geological conditions of field development. This paper presents the theoretical aspects of developing geo-mechanical and filtration models which describe the formation of gas reservoirs and methane mass transfer of in a rock when developing a single horizontal coal seam. Using these models, the regularities of the development in time of the stress-strain state of the rock mass during the development of the formation by a long face were obtained. In particular, the zones of unloading and surcharging in the roof and soil of the formation were obtained, based on which the parameters of the induced porosity and permeability in the enclosing rock mass were determined. These parameters will make it possible to simulate the transfer of methane from the surrounding massif to the mined-out space (goaf). The theoretical foundations of the method for determining the permeability of rocks in the mode of non-stationary filtration are presented.

Bibliography:

1. Прогноз опасности внезапных выбросов и горных ударов по энергии массива / Г.Н. Фейт, О.Н. Малинникова, В.С. Зыков, В.А. Рудаков // Физико-технические проблемы разработки полезных ископаемых. – 2002. – № 1. – С. 67–70.
2. О некоторых особенностях взаимодействия между геомеханическими и физико-химическими процессами в угольных пластах Кузбасса / В.Н. Опарин, Т.А. Киряева, В.Ю. Гаврилов [и др.] // Физико-технические проблемы разработки полезных ископаемых. – 2014. – № 2. – С. 3–30.
3. Физико-химия газодинамических явлений в шахтах / В.В. Ходот, М.Ф. Яновская, Ю.С. Премыслер [и др.]. – М.: Наука, 1972. – 140 с.
4. Кузнецов С.В., Кригман Р.Н. Природная проницаемость угольных пластов и методы ее определения. – М.: Наука, 1978. – 122 с.
5. Подземная гидромеханика / К.С. Басниев, Н.М. Дмитриев, Р.Д. Каневская, В.М. Максимов. – М.–Ижевск: Ин-т компьютер. исслед., 2006. – 488 с.
6. Руководство по исследованию скважин / А.И. Гриценко, З.С. Алиев, О.М. Ермилов [и др.]. – М.: Наука, 1995. – 523 с.
7. Roof tensile failures in underground excavations / J. Alcalde-Gonzalo, M.B. Prendes-Gero, M.I. Alvarez-Fernandez [et al.] // Int. J. of Rock Mechanics and Mining Sciences. – 2013. – Vol. 58. – P. 141–148. – DOI: 10.1016/j.ijrmms.2012.10.003
8. Diederichs M.S., Kaiser P.K. Stability of large excavations in laminated hard rock masses: the voussoir analogue revisited // Int. J. of Rock Mechanics and Mining Sciences. – 1999. – Vol. 36, Issue 1. – P. 97–117.
9. Physical modelling of subsidence from sequential extraction of partially overlapping longwall panels and study of substrata movement characteristics / B. Ghabraie, Gang Ren, Xiangyang Zhang, J. Smith // Int. J. of Coal Geology. – 2015. – Vol. 140. – P. 71–83. – DOI: 10.1016/j.coal.2015.01.004
10. Application of 3D laser scanner, optical transducers and digital image processing techniques in physical modelling of mining-related strata movement / B. Ghabraie, Gang Ren, J. Smith, L. Holden // Int. J. of Rock Mechanics and Mining Sciences. – 2015. – Vol. 80. – P. 219–230. – DOI: 10.1016/j.ijrmms.2015.09.025
11. Курленя В.М., Миренков В.Е. Феноменологическая модель деформирования горных пород вокруг выработок // Физико-технические проблемы разработки полезных ископаемых. – 2018. – № 2. – С. 3–9. – DOI: 10.15372/FTPRPI20180203
12. Unlu T., Akcin H., Yilmaz O. An integrated approach for the prediction of subsidence for coal mining basins // Engineering Geology. – 2013. – Vol. 166. – P. 186–203. – DOI: 10.1016/j.enggeo.2013.07.014
13. Application of a mesh-free continuum method for simulation of rock caving processes / S. Karekal, R. Das, L. Mosse, P.W. Cleary // Int. J. of Rock Mechanics and Mining Sciences. – 2011. – Vol. 48, Issue 5. – P. 703–711. – DOI: 10.1016/J.IJRMMS.2011.04.011
14. Prediction of underground cavity roof collapse using the Hoek-Brown failure criterion / A.M. Suchowerska, R.S. Merifield, J.P. Carter, J. Clausen // Computers and Geotechnics. – 2012. – Vol. 44. – P. 93–103. – DOI: 10.1016/j.compgeo.2012.03.014
15. Rezaei M., Hossaini M.F., Majdi A. Determination of longwall mining-induced stress using the strain energy method // Rock Mechanics and Rock Engineering. – 2015. – Vol. 48, Issue 6. – P. 2421–2433. – DOI: 10.1007/s00603-014-0704-8
16. Курленя В.М., Миренков В.Е. Деформирование весомого массива горных пород в окрестности прямолинейной конечной трещины // Физико-технические проблемы разработки полезных ископаемых. – 2018. – № 6. – С. 14–20. – DOI: 10.15372/FTPRPI20180602
17. Fracture failure analysis of hard-hick sandstone roof and its controlling effect on gas emission in underground ultra-thick coal extraction / Wei Wang, Yuan-ping Cheng, Hai-feng Wang [et al.] // Engineering Failure Analysis. – 2015. – Vol. 54. – P. 150–162. – DOI: 10.1016/J.ENGFAILANAL.2015.04.016
18. Мусхелишвили Н.И. Некоторые основные задачи математической теории упругости. – М.: Наука, 1966. – 709 с.
19. Христианович С.А., Кузнецов С.В. О напряженном состоянии горного массива при проведении очистных работ // Горное давление. – Л.: ВНИМИ, 1965. – Сб. LIX. – С. 95–111.
20. Trubetskoi K.N., Kuznetsov S.V., Trofimov V.A. Stress state and failure of seam contacts with enclosing rocks in driving stope // J. of Mining Science. – 2001. – Vol. 37, No. 4. – P. 345–353. – DOI: 10.1023/A:1014233905013
21. Kuznetsov S.V., Trofimov V.A. Deformation of a rock mass during excavation of a flat sheet-like hard mineral deposit // J. of Mining Science. – 2007. – Vol. 43, No. 4. – P. 341–360. – DOI: 10.1007/s10913-007-0034-2
22. Kuznetsov S.V., Trofimov V.A. Original stress state of coal seams // J. of Mining Science. – 2003. – Vol. 39, No. 2. – P. 107–111. – DOI: 10.1023/B:JOMI.0000008454.88451.f0 23. ГОСТ 26450.2-85. Породы горные. Метод определения коэффициента абсолютной газопроницаемости при стационарной и нестационарной фильтрации. – URL: http://docs.cntd.ru/document/1200023988 (дата обращения 24.12.2020).
24. Pinkun Guo, Yuanping Cheng. Permeability prediction in deep coal seam: A case study on the № 3 coal seam of the Southern Qinshui Basin in China // The Scientific World J. – 2013. – Vol. 2013. – 10 p. – DOI: 10.1155/2013/161457
25. Effect of Gas Content and Actual Stresses on Coalbed Permeability / V.N. Zakharov, O.N. Malinnikova, V.A. Trofimov, Yu.A. Filippov // J. of Mining Science. – 2016. – Vol. 52, No. 2. – P. 218–225. – DOI: 10.1134/S1062739116020345
26. Христианович С.А. Об основах теории фильтрации // Физико-технические проблемы разработки полезных ископаемых. – 1991. – № 1. – С. 3–18.
27. Тихонов А.Н., Самарский А.А. Уравнения математической физики. – М.: Наука, 1977. – 736 с.