Scientific and technical journal

«Equipment and technologies for oil and gas complex»

ISSN 1999-6934

RESEARCH OF USING ANTI-TURBULENT AND DEPRESSOR ADDITIVES IN PIPELINE TRANSPORT OF HIGH-VISCOUS OILS

UDC: 622.692.4
DOI: 10.33285/1999-6934-2021-4(124)-54-57

Authors:

NIKOLAEV ALEXANDER KONSTANTINOVICH1,
DEMENIN EGOR SERGEEVICH1,
PLOTNIKOVA KRISTINA IGOREVNA1

1 St. Petersburg Mining University, St. Petersburg, Russian Federation

Keywords: high-viscous oil; anti-turbulent additive; hydraulic resistance; depressant additive; pour point

Annotation:

There exist a lot of different solutions that facilitate the efficient transportation of high-viscous oils by pipelines. The use of anti-turbulent and depressant additives makes it possible to increase the efficiency of oil pipelines transporting high-viscous oil. This method provides the transportation efficiency increase by reducing the hydraulic resistance and increasing the fluidity of oil. The work carried out a theoretical study of the existing types of anti-turbulent and depressant additives. This paper presents an experimental study of the effect of the MR 1088 depressant additive produced by LLC "Mirrico" on an oil sample from the Usa – Ukhta main oil pipeline.

Bibliography:

1. Transportation of Heavy and Extra-Heavy Crude Oil by Pipeline: a Review / R. Martinez-Palou, M. de Lourdes Mosqueira, B. Zapata-Rendón [et al.] // J. of Petroleum Science and Engineering. – 2011. – Vol. 75, Issue 3-4. – P. 274–282. – DOI: 10.1016/j.petrol.2010.11.020
2. Dzhagarova B., Bokhossian I. On the Structure of Solutions of Dragreducing Polymer Mixtures // IUPAC Makro Mainz: 26-th Int. Symp. Macromol. – Mainz, 1979. – Prepr. Shot Commun. – Vol. 2. – P. 1158–1160.
3. Gyr A., Bewersdorff H.W. Drag Reduction of Turbulent Flows with Additives. – Dordrecht, The Netherlands: Kluwer Academic Publishers, 1995. – 236 p.
4. Kulicke W., Kötter M., Gräger H. Drag Reduction Phenomenon with Special Emphasis on Homogeneous Polymer Solutions // Advances in Polymer Science. – 1989. – Vol. 89. – P. 1–68. – DOI: 10.1007/BFb0032288
5. Sharma R.S., Seshadri V., Malhotra R.C. Turbulent Drag Reduction by Injection of Fibers // J. of Rheology. – 1978. – Vol. 22, Issue 6. – P. 643–659. – DOI: 10.1122/1.549495
6. Roy A., Larson R.G. A Mean Flow Model for Polymer and Fiber Turbulent Drag Reduction // Applied Rheology. – 2005. – Vol. 15, No 6. – P. 370–389. – DOI: 10.1515/arh-2005-0018
7. Manfield P.D., Lawrence C.J., Hewitt G.F. Drag Reduction with Additive in Multiphase Flow: a Literature Survey // Multiphase Science and Technology. – 1999. – Vol. 11, Issue 3. – P. 197–221. – DOI: 10.1615/MultScienTechn.v11.i3.20
8. Снижение гидродинамического сопротивления при течении углеводородных жидкостей в трубах противотурбулентными присадками / А.И. Гольянов, В.В. Жолобов, Г.В. Несын [и др.] // Наука и технологии трубопроводного транспорта нефти и нефтепродуктов. – 2012. – № 2(6). – С. 80–87.
9. Галимов И.А. Математическое моделирование процесса остывания нефтепровода // Современные проблемы науки и образования. – 2011. – № 6. – С. 134.
10. Проскуряков В.А., Драбкин А.Е. Химия нефти и газа: учеб. пособие для вузов. – Л.: Химия, 1981. – 359 с.
11. Химические продукты серии MR™. – URL: https://mirrico.ru/catalog/products/mr/#description