Scientific and technical journal
«Equipment and technologies for oil and gas complex»
ISSN 1999-6934
Improving the efficiency of liquid phases separation in jet hydrocyclones
UDC: 62-465:539.4.001.21
DOI: 10.33285/1999-6934-2022-3(129)-27-33
Authors:
1 Ufa State Petroleum Technological University, Oktyabrsky, Bashkortostan, Russia
Keywords: efficiency, swirling jet, liquid phase, structure of the formed counter flow, flow
Annotation:
Carrying out various technological processes, including process and waste water purification, is associated with phase separation. The most efficient process of phase separation occurs in the field of centrifugal forces. Such equipment – vortex apparatuses, centrifuges, hydrocyclones – work and separate various mixtures: liquid–solid phase, liquid–liquid, gas–liquid, gas–solid phase. The separation process occurs mainly in the external flow of a moving multicomponent mixture. The main factor during phase separation is the presence of closed circulation vortices between the rotating flows of the liquid phase and the central gas-air column. The choice of the scheme of centrifugal separation process in apparatuses of cyclone and hydrocyclone types depends on the solution of this issue. The initial parameters of the injected suspension jet determine the processes of flows formation in the hydrocyclone and separation of the jet. Suspension entering the hydrocyclone body tangentially or at some angle already has a formed jet profile and retains it as it moves towards the lower discharge opening. The separation process occurs in a swirling jet as it moves in the hydrocyclone, and the efficiency of this process depends on the factors that determine the stability of the flow jet structure. The results of experimental studies of the hydrocyclone operation with a finely dispersed suspension: the proposed measures and the obtained experimental results on the swirling jet hydrodynamics can be applied to improve the separation process efficiency in cylindrical countercurrent hydrocyclones; the interaction of the swirling jet in the near-wall area with the liquid phase is decisive; reduction or complete exclusion of the swirling jet interaction with the liquid phase in the near-wall zone provides a sharp increase in the process of phase separation; the pitch of the swirling jet is the determining parameter for the design of internal elements placed in hydrocyclones; the conical displacer determines the nature and structure of the formed counter flow in the zone near the axis of the device; the efficiency of the separation process is increased by replacing the annular outlet section with a helical surface with a pitch suitable for the pitch of the swirling jet.
Bibliography:
1. Troshkin O.A., Tarasova L.A. Gidrodinamicheskaya ustoychivost' techeniya v apparatakh s zakruchennym dvizheniem faz // Khimicheskoe i neftegazovoe mashinostroenie. – 2009. – № 3. – S. 3–4.2. Khabibullin M.Ya. Theoretical grounding and controlling optimal parameters for water flooding tests in field pipelines // J. of Physics: Conference Series. – 2019. – Vol. 1333, Issue 4. – (The Int. Conf. "Information Technologies in Business and Industry", 3 – Control systems, industrial automation and manufacturing execution systems, Feb. 18–20, 2019, Novosibirsk, Russian Federation). – DOI: 10.1088/1742-6596/1333/4/042013
3. Laptev A.G. Modeli pogranichnogo sloya i raschet teplomassoobmennykh protsessov. – Kazan': Izd-vo Kazanskogo un-ta, 2007. – 500 s.
4. Tarasova L.A., Morozov A.V., Troshkin O.A. Protsess massoperenosa v nizkonapornoy vikhrevoy trube // Khimicheskoe i neftegazovoe mashinostroenie. – 2007. – № 12. – S. 10–11.
5. Lagutkin M.G., Isaev S.V. Matematicheskoe modelirovanie protsessa inzhektsii gaza v vikhrevom ezhektore // Khimicheskoe i neftegazovoe mashinostroenie. – 2011. – № 8. – S. 3–6.
6. Khabibullin M.Ya. Managing the reliability of the tubing string in impulse non-stationary flooding // J. of Physics: Conference Series. – 2019. – Vol. 1333, Issue 5. – (The Int. Conf. "Information Technologies in Business and Industry", 4 – Robotics and Electrical Drives, Feb. 18–20, 2019, Novosibirsk, Russian Federation). – DOI: 10.1088/1742-6596/1333/5/052012
7. Khabibullin M.Ya. Development of the design of the sucker-rod pump for sandy wells // IOP Conf. Series: Materials Science and Engineering. – 2019. – Vol. 560. – (Int. Conf. on Mechanical Engineering, Automation and Control Systems 2018, Dec. 12–14, 2018, Novosibirsk, Russian Federation). – DOI: 10.1088/1757-899X/560/1/012065
8. Tarasova L.A., Terekhov M.A., Troshkin O.A. Raschet gidravlicheskogo soprotivleniya vikhrevogo apparata // Khimicheskoe i neftegazovoe mashinostroenie. – 2004. – № 2. – S. 11–12.
9. Laptev A.G., Basharov M.M., Farakhova A.I. Effektivnost' turbulentnoy separatsii melkodispersnoy fazy v tonkosloynykh otstoynikakh // Energosberezhenie i vodopodgotovka. – 2011. – № 5(73). – S. 43–46.
10. Lagutkin M.G., Isaev S.V. Raschet parametrov raboty vikhrevogo ezhektora // Matematicheskie metody v tekhnike i tekhnologiyakh – MMTT-25: sb. tr. XXV Mezhdunarodnoy nauch. konf., Volgograd, 29–31 maya 2012 g.: v 10 t. – Saratov: Saratovskiy gos. tekhn. un-t im. Yu.A. Gagarina, 2012. – T. 8, sektsiya 12. – S. 29–30.
11. Adelypin A.B., Selyugin A.S. Rezul'taty promyshlennykh ispytaniy blochnoy avtomatizirovannoy gidrotsiklonnoy stantsii ochistki neftepromyslovykh stochnykh vod // Neftepromyslovoe delo i transport nefti. – 1985. – № 12. – S. 36–38.
12. Khabibullin M.Ya. Sovershenstvovanie oborudovaniya i tekhnologii izbiratel'noy kislotnoy obrabotki skvazhin // Neftegazovoe delo. – 2020. – T. 18, № 5. – S. 114–121. – DOI: 10.17122/ngdelo-2020-5-114-121
13. Fafurin V.A. Otsenka kinematicheskoy struktury techeniya v gidrotsiklone // Izv. vuzov. Ser.: Khimiya i khimicheskaya tekhnologiya. – 2003. – T. 46, № 3. – S. 153–158.
14. Lagutkin M.G., Baranov D.A. Otsenka deystviya sily Koriolisa v apparatakh s zakruchennym potokom // Teoreticheskie osnovy khimicheskoy tekhnologii. – 2004. – T. 38, № 1. – S. 9–13.
15. Bauman A.V. Primenenie eksperimental'no-analiticheskogo metoda matematicheskogo modelirovaniya pri razrabotke skhemy klassifikatsii gidroksida alyuminiya gidrotsiklonami // Vestn. Pavlodarskogo gos. un-ta. – 2004. – № 1. – S. 182–191.
16. Khabibullin M.Ya. Sistematizirovannyy podkhod k metodam zakachki vody v nagnetatel'nye skvazhiny // Neftegazovoe delo. – 2019. – T. 17, № 3. – S. 80–86. – DOI: 10.17122/ngdelo-2019- 3-80-86
17. Laptev A.G., Basharov M.M., Farakhova A.I. Yavleniya turbulentnogo perenosa tonkodispersnykh chastits v zhidkoy faze dinamicheskikh separatorov // Politemat. setevoy elektron. nauch. zhurn. Kubanskogo gos. agrarnogo un-ta. – 2011. – № 68. – S. 147–177. – URL: http://www.ej.kubagro.ru/2011/04/pdf/43.pdf
18. Raschet razdelyayushchey sposobnosti tsilindrokonicheskogo gidrotsiklona na osnove determinirovannogo podkhoda / M.G. Lagutkin, D.A. Baranov, S.Yu. Bulychev, E.Yu. Baranova // Khimicheskoe i neftegazovoe mashinostroenie. – 2004. – № 5. – S. 3–6.
19. Chesnokov Yu.G., Bauman A.B., Flisyuk O.M. Raschet polya skorostey zhidkosti v gidrotsiklone // Zhurnal prikladnoy khimii. – 2006. – T. 79, № 5. – S. 783–786.
20. Bauman A.V., Yanin S.V. Vliyanie reologicheskikh svoystv suspenzii na parametry klassifikatsii v gidrotsiklone // Alyuminiy Sibiri – 2003: sb. nauch. st. – Krasnoyarsk, 2003. – S. 339–342.
21. Khabibullin M.Ya. Uvelichenie effektivnosti razdeleniya zhidkikh sistem pri sbore plastovoy zhidkosti // Neftegazovoe delo. – 2020. – T. 18, № 2. – S. 64–71. – DOI: 10.17122/ngdelo-2020-2-64-71
22. Khabibullin M.Ya. Sovershenstvovanie protsessa solyanokislotnoy obrabotki skvazhin primeneniem noveyshikh tekhnologiy i oborudovaniya // Izv. Tomskogo politekhn. un-ta. Inzhiniring georesursov. – 2020. – T. 331, № 10. – S. 128–134. – DOI: 10.18799/24131830/2020/10/2861
23. Bauman A.V., Chesnokov Yu.G. Metodika tekhnologicheskogo rascheta protsessa gidrotsiklonirovaniya suspenzii gidroksida alyuminiya // Alyuminiy Sibiri – 2005: sb. nauch. st. – 2005. – S. 205–211.
24. Prokopov I.V. Rossiyskaya alyuminievaya promyshlennost' i nekotorye sovremennye tendentsii razvitiya mirovogo rynka alyuminiya // Alyuminiy Sibiri – 2004: sb. nauch. st. – 2004. – S. 4–16.
25. Gilaev Gen.G., Khabibullin M.Ya., Gilaev G.G. Perspektivy primeneniya kislotnogo gelya dlya zakachki proppanta v protsesse provedeniya gidrorazryva karbonatnykh plastov na territorii Samarskoy oblasti // Neft. khoz-vo. – 2020. – № 8. – S. 54–57. – DOI: 10.24887/0028-2448-2020-8-54-57
26. Yang X., Long X., Yao X. Numerical investigation on the mixing process in a steam ejector with different nozzle structures // Int. J. of Thermal Sciences. – 2012. – Vol. 56. – P. 95–106. – DOI: 10.1016/j.ijthermalsci.2012.01.021
27. Spiridonov E.K., Bityutskikh S.Yu. O rabote zhidkostnogo ezhektora pri malykh koeffitsientakh ezhektsii // Izv. Samarskogo nauch. tsentra RAN. – 2014. – T. 16, № 1-2. – S. 538–542.
28. Khabibullin M.Ya. Povyshenie dolgovechnosti i nadezhnosti raboty tsentrobezhnykh separatorov putem primeneniya novykh materialov // Neftegazovoe delo. – 2020. – T. 18, № 3. – S. 107–112. – DOI: 10.17122/ngdelo-2020-3-107-112
29. Lagutkin M.G., Mikhal'chenkova A.N., Butrin M.M. Vliyanie konstruktivnykh i rezhimnykh parametrov raboty vikhrevogo apparata na velichinu koeffitsienta ezhektsii // Energosberezhenie i vodopodgotovka. – 2015. – № 3(95). – S. 55–59.
30. Lamskova M.I., Novikov A.E. Kompleksnaya mekhanicheskaya vodoochistka v gidrotsiklonakh dlya sistem kapel'nogo poliva // Ekologomeliorativnye aspekty ratsional'nogo prirodopol'zovaniya: materialy mezhdunar. nauch.-prakt. konf., Volgograd, 31 yanv. – 3 fevr. – Volgograd: Volgogradskiy gos. agrarnyy un-t, 2017. – T. 2. – S. 257–263.