Scientific and technical journal

«Equipment and technologies for oil and gas complex»

ISSN 1999-6934

Equipment and technologies for oil and gas complex
Analysis of the dependence of flow rate and pressure drop in an oil pipeline on the pumped liquid temperature

UDC: 621.6.078
DOI: 10.33285/1999-6934-2022-3(129)-62-71

Authors:

IGNATIK ANATOLY A.1

1 Ukhta State Technical University, Ukhta, Russia

Keywords: Darcy friction factor, head loss coefficient for the valve or fitting, laboratory stand, oil pipeline, head loss, absolute pipe roughness, experiment

Annotation:

The article considers an experimental study carried out on a hydraulic stand in the laboratory conditions with the purpose of simulating the operational modes of an oil pipeline at different temperatures of the pumped liquid. The main equipment of the stand: tank includes a pump, an electric heater, a pipeline; measuring instruments such as: pressure gauges, flow meter, and temperature sensor. Geometrical parameters of the pipeline are as follows: the internal diameter is 35,9 mm; the length is 31 m; pipes are steel. "Oil in water" emulsion was used as the pumped liquid, the dependences of density and kinematic viscosity of which on the temperature are known. The liquid temperature increased in the electric heater from 20 to 62 °C during the experiment. The dependence of liquid flow rate on its temperature and the dependence of pressure drops (head losses) on temperature are obtained; minimum of pressure drop is found at the temperature of 48 °C. Then hydraulic calculations were later on performed in order to determine the Reynolds numbers, Darcy friction factor, head loss due to friction, valves and fittings. To overcome the contradiction in the experimental and calculated results it is assumed that the roughness of the internal pipe surface decreases with the liquid temperature increase. Formulas for calculating the absolute (or equivalent) pipe roughness according to experimental data are proposed. The conclusion is also substantiated that with increasing liquid temperature the head loss coefficient for the valve or fitting decreases. Qualitative combined flow rate-head characteristic of the system pump station – oil pipeline is proposed when the temperature of the liquid changes where the movement of characteristics and the working point is demonstrated.

Bibliography:

1. Pshenin V.V., Klimko V.I. Vybor optimal'noy temperatury podogreva pri "goryachey" perekachke nefti i nefteproduktov // Gornyy inform.-analit. byul. – 2013. – № 8. – S. 338–341.
2. Semin S.L., Fedorov P.V. Optimizatsiya tekhnologicheskikh rezhimov magistral'nogo truboprovoda v usloviyakh raboty punktov podogreva nefti i primeneniya protivoturbulentnykh prisadok // Nauka i tekhnologii truboprovodnogo transporta nefti i nefteproduktov. – 2018. – T. 8, № 6. – S. 650–655.
3. Sravnitel'naya otsenka effektivnosti "goryachey" perekachki / A.I. Gol'yanov, B.G. Grisha, S.E. Kutukov, O.V. Chetvertkova // Nauka i tekhnologii truboprovodnogo transporta nefti i nefteproduktov. – 2018. – T. 8, № 6. – S. 642–649.
4. Solving Heated Oil Pipeline Problems Via Mixed Integer Nonlinear Programming Approach / Muming Yang, Yakui Huang, Yu-Hong Dai, Bo Li. – URL: https://www.researchgate.net/publication/334695141_Solving_Heated_Oil_Pipeline_Problems_Via_Mixed_Integer_Nonlinear_Programming_Approach (data obrashcheniya 25.04.2022).
5. Research on Exergy Flow Composition and Exergy Loss Mechanisms for Waxy Crude Oil Pipeline Transport Processes / Qinglin Cheng, Yifan Gan, Wenkun Su [et al.] // Energies. – 2017. – Vol. 10, Issue 12. – DOI: 10.3390/en10121956
6. Metodika otsenki teploprovodnosti organicheskikh otlozheniy na laboratornoy ustanovke Wax Flow Loop / P.Yu. Ilyushin, K.A. Vyatkin, A.V. Kozlov, A.O. Votinova // Nauka i tekhnologii truboprovodnogo transporta nefti i nefteproduktov. – 2021. – T. 11, № 6. – S. 622–629. – DOI: 10.28999/2541-9595-2021-11-6-622-629
7. Experimental Study on the Flow Regimes and Pressure Gradients of Air-Oil-Water Three-Phase Flow in Horizontal Pipes / L.M. Al-Hadhrami, S.M. Shaahid, L.O. Tunde, A. Al-Sarkhi // The Scientific World J. – 2014. – No. 2. – DOI: 10.1155/2014/810527
8. Flow and heat exchange calculation of waxy oil in the industrial pipeline / U.K. Zhapbasbayev, G.I. Ramazanova, D.Zh. Bossinov, B.K. Kenzhaliyev // Case Studies in Thermal Engineering. – 2021. – Vol. 26. – DOI: 10.1016/j.csite.2021.101007
9. Truboprovodnyy transport nefti i nefteproduktov: sprav. posobie: v 2 t. T. 1 / B.N. Mastobaev [i dr.]; pod obshch. red. Yu.V. Lisina. – M.: Nedra, 2017. – 494 s.
10. Korshak A.A., Nechval' A.M. Proektirovanie i ekspluatatsiya gazonefteprovodov: ucheb. dlya vuzov. – Rostov n/D.: Feniks, 2016. – 540 s.
11. Tipovye raschety pri proektirovanii i ekspluatatsii neftebaz i nefteprovodov: ucheb. posobie dlya vuzov / P.I. Tugunov, V.F. Novoselov, A.A. Korshak, A.M. Shammazov. – Ufa: DizaynPoligrafServis, 2002. – 658 s.
12. Antipov Yu.A., Khassan Kh., Zharikov I.A. Otsenka gidravlicheskikh i teplovykh poter' v magistral'nykh nefteprovodakh v usloviyakh kholodnogo klimata // Neftegazovoe delo. – 2018. – T. 16, № 2. – S. 99–105. – DOI: 10.17122/ngdelo-2018-2-99-105
13. Tekhnicheskiy pasport: Wilo-Star-RS 30/6 / Wilo. – URL: https://wl-market.ru/upload/shop_1/7/8/9/item_789/shop_property_file_789_1524.pdf (data obrashcheniya 25.04.2022).
14. Morozova N.V., Korshak A.A. O granitsakh zon treniya pri gidravlicheskom raschete nefte- i nefteproduktoprovodov // Neftegazovoe delo. – 2007. – T. 5, № 1. – S. 120–125.
15. Korshak A.A., Morozova N.V. Vybor formul dlya gidravlicheskogo rascheta nefte- i nefteproduktoprovodov // Neft. khoz-vo. – 2021. – № 3. – S. 113–117. – DOI: 10.24887/0028-2448-2021-3-113-117
16. Menon E.S. Pipeline Planning and Construction Field Manual. – Elsevier, 2011. – 552 p. – DOI: 10.1016/C2009-0-63837-X