Scientific and technical journal

«Equipment and technologies for oil and gas complex»

ISSN 1999-6934

Equipment and technologies for oil and gas complex
The role of deep originated hydrocarbons in the formation of gas hydrate deposits

UDC: 553.98
DOI: -

Authors:

SEROVAISKII ALEXANDER YU.1,
KUTCHEROV VLADIMIR G.2

1 National University of Oil and Gas "Gubkin University", Moscow, Russia
2 KTH Royal Institute of Technology, Stockholm, Sweden

Keywords: gas hydrates, abiogenic genesis, gas, extreme thermobaric parameters, hydrocarbon deposits

Annotation:

The article explores the influence of deep hydrocarbons on the formation of gas hydrate deposits. When analyzing hydrocarbon mixtures derived from inorganic carbon and hydrogen compounds under thermobaric conditions corresponding to the Earth's upper mantle and comparing them with samples of natural gas hydrates, a remarkable similarity is observed in both qualitative and quantitative composition. This serves as confirmation of a key aspect of the concept of abiogenic deep origin of hydrocarbons. According to this concept, hydrocarbons present in gas hydrates may originate from deep sources. Gas hydrate deposits likely formed as a result of the vertical migration of deep hydrocarbon fluids through faults and fractures. Consequently, the composition of gas hydrates may directly depend on the thermobaric conditions of abiogenic hydrocarbon synthesis.

Bibliography:

1. Prirodnyy gaz kak osnova energoobespecheniya ustoychivogo razvitiya mirovoy ekonomiki / A.Yu. Serovayskiy, V.G. Kucherov, A.S. Lopatin, V.V. Bessel' // Tr. RGU nefti i gaza im. I.M. Gubkina. – 2022. – № 4(309). – S. 94–103. – DOI: 10.33285/2073-9028-2022-4(309)-94-103
2. Peng Zhang, Qingbai Wu, Cuicui Mu. Influence of temperature on methane hydrate formation // Scientific Reports. – 2017. – Vol. 7, No. 1. – P. 7904. – DOI: 10.1038/s41598-017-08430-y
3. Vysniauskas A., Bishnoi P.R. A kinetic study of methane hydrate formation // Chemical Engineering Science. – 1983. – Vol. 38, Issue 7. – P. 1061–1072. – DOI: 10.1016/0009-2509(83)80027-X
4. Afanas'eva M.A. Ustanovlenie roli gazovykh gidratov v geologicheskikh protsessakh proshlogo // Tr. RGU nefti i gaza im. I.M. Gubkina. – 2021. – № 4(305). – S. 41–50. – DOI: 10.33285/2073-9028-2021-4(305)-41-50
5. Future of gas hydrate research / E.D. Sloan, P.G. Brewer, C.K. Paull [et al.] // EOS: Transactions, American Geophysical Union. – 1999. – Vol. 80, Issue 22. – P. 247. – DOI: 10.1029/99EO00184
6. Ginsburg G.D., Soloviev V.A. Submarine Gas Hydrate Estimation: Theoretical and Empirical Approaches // Offshore Technology Conf., Houston, May 1–4. – 1995. – P. 513–518. – DOI: 10.4043/7693-MS
7. BP Statistical Review of World Energy. – 71st Edition. – 2022. – URL: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf (дата обращения 09.01.2024).
8. Klauda J.B., Sandler S.I. Global Distribution of Methane Hydrate in Ocean Sediment // Energy & Fuels. – 2005. – Vol. 19, Issue 2. – P. 459–470. – DOI: 10.1021/ef049798o
9. Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf / N. Shakhova, I. Semiletov, I. Leifer [et al.] // J. of Geophysical Research: Oceans. – 2010. – Vol. 115, Issue C8. – Article No. C08007. – DOI: 10.1029/2009JC005602
10. Gas hydrate of Lake Baikal: Discovery and varieties / O. Khlystov, M. De Batist, H. Shoji [et al.] // J. of Asian Earth Sciences. – 2013. – Vol. 62. – P. 162–166. – DOI: 10.1016/j.jseaes.2012.03.009
11. Speight J.G. Handbook of industrial hydrocarbon processes. – Gulf Professional Publishing, 2019. – 806 p.
12. Dixit G., Ram H., Kumar P. Origin of gas in gas hydrates as interpreted from geochemistry data obtained during the National Gas Hydrate Program Expedition 02, Krishna Godavari Basin, offshore India // Marine and Petroleum Geology. – 2019. – Vol. 108. – P. 389–396. – DOI: 10.1016/j.marpetgeo.2018.11.047
13. Serovaiskii A.Yu., Kutcherov V.G. The Role of Iron Carbide in the Abyssal Formation of Hydrocarbons in the Upper Mantle // Geosciences. – 2021. – Vol. 11, Issue 4. – P. 163. – DOI: 10.3390/geosciences11040163
14. Serovayskiy A.Yu., Kucherov V.G. Obrazovanie uglevodorodov v sistemakh CaCO3-FeO-H2O-SiO2 i Fe3C-H2O-SiO2 pri termobaricheskikh usloviyakh verkhney mantii // Litosfera. – 2022. – T. 22, № 6. – S. 840–846. – DOI: 10.24930/1681-9004-2022-22-6-840-846
15. Matson D.W., Muenow D.W., Garcia M.O. Volatiles in amphiboles from xenoliths, Vulcan's Throne, Grand Canyon, Arizona, USA // Geochimica et Cosmochimica Acta. – 1984. – Vol. 48, Issue 8. – P. 1629–1636. – DOI: 10.1016/0016-7037(84)90332-6
16. Termodinamicheskiy kriteriy metastabil'nogo sostoyaniya uglevodorodov v zemnoy kore i verkhney mantii / I.K. Karpov, V.S. Zubkov, A.N. Stepanov [i dr.] // Geologiya i geofizika. – 1998. – T. 39, № 11. – S. 1518–1528.
17. Kucherov V.G., Ivanov K.S., Serovayskiy A.Yu. Glubinnyy tsikl uglevodorodov // Litosfera. – 2021. – T. 21, № 3. – S. 289–305. – DOI: 10.24930/1681-9004-2021-21-3-289-305