Top.Mail.Ru

Scientific and technical journal

«Geology, geophysics and development of oil and gas fields»

ISSN 2413-5011

NUMERICAL 3D GEOMECHANICAL MODEL (THE CASE OF PJSC "LUKOIL" OIL FIELD)

UDC: 622.24.001.57
DOI: 10.33285/2413-5011-2021-4(352)-43-48

Authors:

PREDEIN ANDREY ALEKSANDROVICH1,
KLYKOV PAVEL IGOREVICH1,
GARSHINA OLGA VLADIMIROVNA1,
OKROMELIDZE GENNADIY VLADIMIROVICH1,
KUZNETSOV SERGEY ALEKSANDROVICH1,
KILINA MARIA FEDOROVNA1,
KUCHEVASOV SERGEY IVANOVICH1

1 LUKOIL-Engineering Limited PermNIPIneft Branch Office in Perm, Perm, Russian Federation

Keywords: geomechanics, stress calculation, finite element method, wellbore stability, pore pressure, rock caving pressure, absorption pressure, hydraulic fracturing pressure, horizontal drilling

Annotation:

The results of geomechanical simulation for solving problems of provision of accident-free well drilling are considered. A numerical 3D geomechanical model for the field under study with the subsequent stability calculation of producing wells is developed. A method of 1D geomechanical simulation on reference wells was studied, including determination of dynamic and static elastic strength characteristics of rocks, calculation of pore pressure and vertical and horizontal stress. Well stability calculations based on the 1D geomechanical simulation results were obtained and analyzed. Next, the results of 3D geomechanical simulation were analyzed: determination of the limits and development of the model’s structural framework, geometry testing, filling the grid with mechanical properties, as well as calculation of the total stress tensor by the finite element method (FEM). The results of 1D and 3D modeling were compared. Herewith, a numerical 3D geomechanical model for the field under study was developed. The next step was to calculate wellbore stability for projected wells. Additionally, cubes of pressure gradients of drilling mud absorption, rock caving and hydraulic fracturing at various inclination angles and drilling directions were calculated. Recommendations have been developed for accident-free well construction in the field under study, including real-time support and update of the geomechanical model during drilling. The results obtained and the operations method can be used in the design and construction of wells in other fields subject to regional specifics.

Bibliography:

1. Fischer К., Henk A. Generating and Calibrating 3D Geomechanical Reservoir Models // 75th EAGE conference & exhibition incorporating SPE EUROPEC-2013. - 2013. - № 75. - 348 р.
2. Byoung Yoon Park, Sobolik R. Steven, Courtney G. Herrick. Geomechanical Model Calibration Using Field Measurements for a Petroleum Reserve // Rock Mechanics and Rock Engineering. - 2018. - № 3. - Pp. 925-943.
3. Henk A., Fischer K., Winter I. Prediction of tectonic stresses and fracture networks with geomechanical reservoir models // Berichte - Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle. - Forschungsbericht, 2014. - № 725. - 205 р.
4. Предеин А.А., Клыков П.И. Построение геомеханической модели и расчет устойчивости ствола скважины на примере одного из месторождений Пермского края // Бурение и нефть. - 2016. - № 4.
5. Geomechanical wellbore stability analysis for the reservoir section in J-NC186 oil field / T.M. Albukhari, G.K. Beshish, M.M. Abouzbeda, A. Madi // Tunisian Society for Rock Mechanics. - 2018. - Pp. 179-193.
6. Геомеханическое моделирование как неотъемлемая часть комплексного подхода к строительству скважин в сложных горно-геологических условиях / О.В. Гаршина, А.А. Предеин, П.И. Клыков, П.А. Хвощин, И.Л. Некрасова // Нефтепромысловое дело. - М.: ОАО "ВНИИОЭНГ", 2017. - № 5. - С. 28-33.
7. Развитие геомеханического моделирования в России / В.А. Павлов, М.А. Лушев, Е.П. Корельский, П.Г. Ласкин // Технологии нефти и газа. - 2017. - № 6. - С. 3-9.
8. Zoback M. Reservoir geomechanics. - Cambridge University Press, 2007. - 505 p.
9. Petroleum related rock mechanics / E. Fjaer, R.M. Holt, P. Horsrud, A.M. Raaen, R. Risness // Developments in Petroleum Science. - Elsevier Science, 1992. - № 33. - 346 p.
10. Hoek E., Brown E.T. Underground excavations in rock. - London: Institution of Mining and Metallurgy, 1980. - 527 p.
11. Reservoir geomechanics in carbonates / O. Hamid [et al.] // SPE Middle East Oil & Gas Show and Conference. - Manama, 2017. - DOI: 10.2118/183704-MSpdf
12. Mohr-Coulomb yield criterion in rock plastic mechanics / Wang Hongcai, Zhao Weihua, Sun Dongsheng, Guo Binbin // Acta Geophysica Sinica. - 2012. - № 12. - Pp. 4231-4238.
13. Al-Ajml A.M., Zimmerman R.W. Stability Analysis of Vertical Boreholes Using the Mogi-Coulomb Failure Criterion // Int. J. Rock Mechanics & Mining Science. - 2006. - Vol. 43. - Pp. 1200-1211.
14. Ewy R.T. Wellbore stability predictions by use of a modified Lade criterion // SPE 56862-PA. - 1999. - Pp. 85-91.
15. Некрасов С.В., Андрейко С.С. Вычислительная схема оценки напряженно-деформированного состояния кусочнооднородной трехмерной упругой среды на основе непрямого метода граничных элементов // Вестник Пермского нац. исслед. политехнич. ун-та. Геология. Нефтегазовое и горное дело. - 2015. - № 16. - С. 86-97. - DOI: 10.15593/2224-9923/2015.16.10
16. Zhou Bo, Sun Bo, Xue Shifeng. Extended finite element method for fracture mechanics of rock // J. of China University of Petroleum, Edition of Natural Science. - 2016. - № 4. - Рp. 121-126.
17. Discussion on the fracture of layered rock mass based on the finite element method / Xu Ke, Dai Junsheng, Fu Xiaolong, Ren Qiqiang, Liu Congning, Zhao Yun // J. of Geomechanics. - 2015. - № 3. - Рp. 330-340.
18. Pryhorovska T.O., Chaplinskiy S.S., Kudriavtsev I.O. Finite element modeling of rock mass cutting by cutters for PDC drill bits // Petroleum Exploration and Development. - 2015. - № 6. - Рр